Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 107 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
107
Dung lượng
565,37 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ĐỊNH LÝ TỒN TẠI VÀ DUY NHẤT CỦA BÀI TOÁN BA ĐIỂM BIÊN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Hàng đợi phần sống hàng ngày Chúng ta phải đứng chờ quầy thu tiền siêu thị, chờ để mua vé xem phim, mua vé xe, vé tàu, rút tiền trạm ATM, lấy thức uống quán cà phê, đứng chờ mua xăng trạm xăng, chờ xử lý phòng cấp cứu, máy bay chờ cất cánh, hạ cánh, tàu thuỷ chờ bốc, dỡ hàng hoá cảng Trong mơ hình phục vụ trên, khách hàng phải dùng chung tài nguyên, phải chờ để phục vụ bị từ chối phục vụ Trong tình huống, thời gian chờ điều mà không muốn 894 2 Mở rộng Dorroh mở rộng ∆U -vành Mệnh đề Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Mỗi x ∈ ∆(R), ta có − x ∈ U (R), x = − (1 − x) ∈ U◦ (R) Suy ∆(R) ⊆ U◦ (R) Ngược lại, y ∈ U◦ (R) − y ∈ U (R) = + ∆(R) Suy y ∈ ∆(R) hay ∆(R) = U◦ (R) (2) ⇒ (3) Hiển nhiên (3) ⇒ (1) Giả sử ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Khi u ∈ U (R), tồn x ∈ ∆(R) thỏa mãn u = ε(x) = − x Điều nghĩa U (R) ⊆ + ∆(R) hay U (R) = + ∆(R) Nếu R vành, mở rộng Dorroh vành có đơn vị Z ⊕ R, với phép toán cộng cộng theo thành phần phép nhân cho (n1 , r1 )(n2 , r2 ) = (n1 n2 , r1 r2 + n1 r2 + n2 r1 ) Chú ý Cho R vành có đơn vị Khi (1) u ∈ U (R) − u ∈ U◦ (R) (2) (1, u − 1) ∈ U (Z ⊕ R) với u ∈ U (R) (3) (1, −x)(1, −y) = (1, −x◦y) (−1, x)(−1, y) = (1, −x◦y) với x, y ∈ R Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành; (2) R ∆U -vành Chứng minh (1) ⇒ (2) Lấy u ∈ U (R) Khi − u ∈ U◦ (R) Tồn v ∈ R thỏa mãn (1 − u) ◦ v = = v ◦ (1 − u) Khi ta có (1, u−1)(1, −v) = (1, −(1−u))(1, −v) = (1, −(1−u)◦v) = (1, 0) = (1, −v)(1, u−1) Điều nghĩa (1, u − 1) ∈ U (Z ⊕ R) Vì Z ⊕ R ∆U -vành, (1, u − 1) ∈ + ∆(Z ⊕ R) (0, u − 1) ∈ ∆(Z ⊕ R) Tiếp theo, ta U (R) = + ∆(R) Thật vậy, t ∈ U (R), ta có + t ∈ U◦ (R), (1 + t) ◦ s = = s ◦ (1 + t) với s ∈ R Khi (−1, + t)(−1, s) = (1, −(1 + t) ◦ s) = (1, 0) = (−1, s)(−1, + t) Do (−1, + t) ∈ U (Z ⊕ R) Theo định nghĩa ∆, ta có (0, u − 1) + (−1, + t) ∈ U (Z ⊕ R) (−1, u + t) ∈ U (Z ⊕ R) Đặt x = u + t Khi đó, (−1, x) ∈ U (Z ⊕ R) (1, −x) ∈ U (Z ⊕ R) Suy tồn (1, −y) ∈ Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Ta có x ◦ y = = y ◦ x nên x ∈ U◦ (R) Vì − x ∈ U (R) nên x − = u + t − ∈ U (R) Suy u + t − = (u − 1) + t ∈ U (R) với t ∈ U (R) Điều nghĩa u − ∈ ∆(R), u ∈ + ∆(R) (2) ⇒ (1) Giả sử R ∆U -vành Ta mở rộng Dorroh Z ⊕ R ∆U -vành, nghĩa U (Z ⊕ R) = + ∆(Z ⊕ R) Lấy ω ∈ U (Z ⊕ R) Khi đó, ω có dạng ω = (1, a) ω = (−1, b) với a, b ∈ R Trường hợp ω = (1, a) ∈ U (Z ⊕ R): Lấy x = −a, tồn (1, −y) Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Điều có nghĩa x◦y = = y ◦x x ∈ U◦ (R), 1+a = 1−x ∈ U (R) Từ R ∆U -vành, 1+a ∈ 1+∆(R) Vì a ∈ ∆(R) a+U (R) ⊆ U (R) Tiếp theo ta chứng minh (1, a) ∈ + ∆(Z ⊕ R), nghĩa ta chứng minh (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Với α ∈ U (Z ⊕ R), α có dạng (1, u) (−1, v) với u, v ∈ R Nếu α = (1, u), từ chứng minh ω ta có + u ∈ U (R) Từ a + U (R) ⊆ U (R), ta lấy a + + u ∈ U (R), −(a + u) ∈ U◦ (R) Lấy b ∈ R với (−(a + u)) ◦ b = = b ◦ (−(a + u)) Đặt c = −(a + u) Khi c ◦ b = b ◦ c (1, a + u)(1, −b) = (1, −c)(1, −b) = (1, −b ◦ c) = (1, 0) = (1, −b)(1, a + u) Ta suy (1, a + u) ∈ U (Z ⊕ R) Hơn nữa, ta có (0, a) + α = (1, a + u) ∈ U (Z ⊕ R), nghĩa (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Nếu α = (−1, v) ∈ U (Z⊕R), (−1, v)(−1, d) = (1, 0) = (−1, d)(−1, v) với d ∈ R Ta suy v◦d = = d◦v = v ∈ U◦ (R), 1−v ∈ U (R) Khi đó, v − ∈ U (R) Từ a + U (R) ⊆ U (R), ta có a + v − ∈ U (R) − (a + v) ∈ U (R) Do đó, a + v ∈ U◦ (R) Nghĩa tồn e ∈ R thỏa mãn (a + v) ◦ e = = e ◦ (a + v), (−1, a + v)(−1, e) = (1, −(a + v) ◦ e) = = (−1, e)(−1, a+v) Điều có nghĩa (−1, a+v) ∈ U (Z ⊕R) Hơn nữa, ta có (0, a) + α = (−1, a + v) ∈ U (Z ⊕ R) Do đó, (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Trường hợp ω = (−1, a) ∈ U (Z ⊕ R): Tương tự Trường hợp Cho C vành vành D, tập hợp R[D, C] := {(d1 , , dn , c, c ) : di ∈ D, c ∈ C, n ≥ 1}, với phép cộng phép nhân định nghĩa theo thành phần gọi vành mở rộng đuôi ký hiệu R[D, C] Mệnh đề R[D, C] ∆U -vành D C ∆U -vành Chứng minh (:⇒) Đầu tiên ta chứng minh D ∆U -vành Lấy u tùy ý thuộc U (D) Khi u¯ = (u, 1, 1, 1, ) ∈ U (R[D, C]) Theo giả thuyết, u¯ ∈ + ∆(R[D, C]), (u − 1, 0, 0, 0, ) + U (R[D, C]) ⊆ U (R[D, C]) Do đó, với v ∈ U (D), (u − + v, 1, 1, 1, ) = (u − 1, 0, 0, 0, ) + (v, 1, 1, 1, ) ∈ U (R[D, C]) Vì u − + v ∈ U (D), nghĩa u − ∈ ∆(D) u ∈ + ∆(D) Để C ∆U -vành, ta lấy v ∈ U (C) thỏa mãn v¯ = (1, , 1, v, v, ) ∈ U (R[D, C]) chứng minh (⇐:) Giả sử D C ∆U -vành Lấy u¯ = (u1 , u2 , , un , v, v, ) ∈ U (R[D, C]), ui ∈ U (D) với ≤ i ≤ n v ∈ U (C) ⊆ U (D) Ta u¯ ∈ ∆(R[D, C]) u¯ − + U (R[D, C]) ⊆ U (R[D, C]) Thật vậy, tất a¯ ∈ (a1 , a2 , , am , b, b, ) ∈ U (R[D, C]) ∈ U (D), ≤ i ≤ m b ∈ U (C) ⊆ U (D) Lấy k = max{m, n} Khi đó, ta có u1 , u2 , , un ∈ U (D), v ∈ U (C) ⊆ U (D) ta suy u1 − + U (D), u2 − + U (D), , un − + U (D) ⊆ U (D), v − + U (D) ⊆ U (D) v − + U (C) ⊆ U (C) Ta có u¯ − = (u1 − 1, u2 − 1, , un − 1, un+1 − 1, , uk − 1, v − 1, v − 1, ), với uj = v j ≥ k , a ¯ = (a1 , a2 , , am , am+1 , , ak , b, b, ), với al = b với l ≥ m Khi ta có u¯ − + a ¯ = (u1 − + a1 , u2 − + a2 , , uk − + ak , v − + b, v − + b, ) Lưu ý ui − + ∈ U (D) với ≤ i ≤ k v − + b ∈ U (C) Ta suy u¯ − + a ¯ ∈ R[U (D), U (C)] = U (R[C, D]) Vì u¯ − ∈ ∆(R[D, C]) u¯ ∈ + ∆(R[D, C]), hay R[D, C] ∆U -vành Các cận cho độ giao hốn tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hốn tương đối nhóm nhóm Mệnh đề Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) |Z(G) ∩ H| + |H| + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề 15 ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H = |K||G| + |CG (x)| + x∈K X x∈H\K |CG (x)| |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do X p(|H| − |K|) ⩽ |CG (x)| ⩽ (|H| − |K|) x∈H\K |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hốn tương đối nhóm nhóm giao hốn Kết sau cho ta cận cho độ giao hoán tương đối nhóm một nhóm khơng giao hốn Mệnh đề Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = X |CG (x)| = |H||G| = |H||G| |H||G| x∈H (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý ?? ta |H| + |H| |Z(G) ∩ H| + |H| Pr(H, G) ⩽ ⩽ = |H| |H| Giả sử H khơng nhóm giao hốn Khi theo Mệnh đề 37 ta có Pr(H) ⩽ Do đó, theo Định lý 17 ta có Pr(H, G) ⩽ Pr(H) ⩽ Vậy ta có điều phải chứng minh Kết sau mơ tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề ?? Mệnh đề Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H khơng giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý ?? ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề ?? (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| thiết Do = 2, H/(Z(G) ∩ H) ∼ = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| H/(Z(G) ∩ H) ∼ = Z2 × Z2 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; ZR Z = f (x − y)ϱh (y)dy − f (x)ϱ(y)dy n Rn ZR (f (x − y) − f (x))ϱh (y)dy =