1. Trang chủ
  2. » Luận Văn - Báo Cáo

Định lý tồn tại và duy nhất của bài toán ba điểm biên

111 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 111
Dung lượng 612,48 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ĐỊNH LÝ TỒN TẠI VÀ DUY NHẤT CỦA BÀI TOÁN BA ĐIỂM BIÊN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 LỜI MỞ ĐẦU Lịch sử phát triển điều khiển tự động ghi nhận từ trước cơng ngun, đồng hồ nước có phao điều chỉnh Ktesibios Hy Lạp Hệ điều chỉnh nhiệt độ Cornelis Drebble (1572-1633) người Hà Lan sáng chế Hệ điều chỉnh mức P olzunou người Nga (1756) Hệ điều chỉnh tốc độ ứng dụng công nghệ Jame W att (1769) Thế chiến lần thứ hai đòi hỏi phát triển lý thuyết ứng dụng để có máy bay lái tự động, hệ điều khiển vị trí pháo, điều khiển loại vũ khí khác, điều khiển tự động rada 851 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa Cho R vành có đơn vị 1R Một R-môđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-môđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -mơđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) Định nghĩa Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-môđun phải với phép toán cộng nhân hạn chế A Định nghĩa (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai mơđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Mơđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, môđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân mơđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-môđun phải Định nghĩa M/N xác định Định lý ?? gọi môđun thương môđun M môđun N Mở rộng Dorroh mở rộng tail ring ∆U -vành Mệnh đề Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề R[D, C] ∆U -vành D C ∆U -vành 3.1 Các nhóm vành Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành Độ giao hoán tương đối nhóm Ta bắt đầu định nghĩa độ giao hốn nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hoán tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh Kết sau cho ta công thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X Pr(H, G) = |CG (x)| = |O(xi )||CG (xi )| |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm (12) Ω Điều kiện (??), (??) tính liên tục ϕ cho Z Z ϕ(f ) = lim ϕ(sh ) = lim h→∞ u f dx, ∀f ∈ Lp (Ω) u sh dx = h→∞ Ω Ω ′ Đặc biệt, tồn u ∈ Lp (Ω) cho T (u) = ϕ Ta điều phải chứng minh Ta chứng minh (??) Trong trường hợp p = 1, giả sử M > cho EM := {x ∈ Ω : u(x) > M } Khi Z udx = ϕ(χEM ) ≤ ∥ϕ∥(Lp (Ω))′ |EM | M |EM | ≤ EM Vì |EM | = M > ∥ϕ∥(Lp (Ω))′ , từ ta suy ≤ u+ (x) ≤ ∥ϕ∥(Lp (Ω))′ hầu khắp nơi x ∈ Ω ⇔ ∥u+ ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ Tương tự ∥u− ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ ′ u = u+ − u− ∈ L∞ (Ω) = L1 (Ω) Trong trường hợp < p < ∞, theo xấp xỉ hàm đơn giản, cho (sh ) dãy hàm đơn giản đo cho ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ |u| Ω, (13) lim sh (x) = |u(x)|, ∀x ∈ Ω (14) h→∞ Bây ta chứng minh ước lượng quan trọng sau ∥sh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (15) 30 Tập hợp ′ uh (x) := |sh (x)|p −1 sign(u(x)) x ∈ Ω Khi (uh ) dãy hàm đơn giản Z Z (??) ′ ∥sh ∥pLp′ (Ω) p′ |sh | dx ≤ = Ω Ω ′ shp −1 |u|dx Z (??) = uh u dx = ϕ(uh ) Ω Z ≤ ∥ϕ∥(Lp (Ω))′ ∥uh ∥Lp (Ω) = ∥ϕ∥(Lp (Ω))′ (p′ −1)p |sh |  p1 dx Ω Z  p1 p′ = ∥ϕ∥(Lp (Ω))′ |sh | dx Ω p′ = ∥ϕ∥(Lp (Ω))′ ∥sh ∥Lpp (Ω) Nếu ∥sh ∥Lp′ (Ω) = 0, (??) hiển nhiên Nếu ∥sh ∥Lp′ (Ω) > 0, bất đẳng thức (??) chia cho ∥sh ∥ p′ p Lp′ (Ω) p ý p′ (1 − ) = Từ (??), (??) bổ đề Fatou ta có Z Z ′ p ∥u∥L = p′ (Ω) ′ Ω h→∞ ′ ′ |u|p dx ≤ lim inf Ω ′ |sh |p dx = lim inf ∥sh ∥pLp′ (Ω) ≤ ∥ϕ∥p(Lp (Ω))′ < ∞ h→∞ Do (??) < p < ∞ Bước 3: Giả sử |Ω| = ∞ ta chứng minh T is still onto Cho (Ω)h dãy tăng tập bị chặn cho Ω = ∪∞ h=1 Ωh ′ Ta đồng ý với nhận định Lp (Ωh ) Lp (Ωh ), (h = 1, 2, ) với không gian ′ Lp (Ω) Lp (Ω) bao gồm hàm khuyết bên Ωh Đặc biệt, với ϕ ∈ (Lp (Ω))′ suy ϕ ∈ (Lp (Ω))′ ∥ϕ∥(Lp (Ωh ))′ ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (16) ′ Từ bước 2, với h, tồn uh ∈ Lp (Ωh ) cho ∥uh ∥Lp′ (Ω) = ∥ϕ∥(Lp (Ωh ))′ Z ϕ(f ) = Ωh uh f dx, ∀f ∈ Lp (Ωh ) (17) (18) 31 Chú ý từ Lp (Ωh ) ⊂ Lp (Ωh+1 ), theo tính uh+1 = uh hầu khắp nơi Ωh Vì vậy, suy định nghĩa hàm u : Ω → R u(x) := uh (x) x ∈ Ωh Từ (??), (??) định lý đơn điệu hội tụ ∥u∥Lp′ (Ω) = lim ∥u∥Lp′ (Ωh ) = lim ∥uh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ < ∞, h→∞ h→∞ ′ u ∈ Lp (Ω) Hơn nữa, f ∈ Lp (Ω), theo định lý tính hội tụ trội f χΩh → f LP (Ω), thế, theo tính liên tục ϕ (??), Z ϕ(f ) = lim ϕ(f χΩh ) = lim h→∞ h→∞ Z u f dx = Ωh u f dx Ω Ta hoàn tất chứng minh Nhận xét Định lý biểu diễn Riesz mở rộng đến không gian đo (X, M, µ) Chính xác hơn, ta xác định ′ Lp (X, µ) ≡ (Lp (X, µ))′ cịn giữ • < p < ∞ cho độ đo tổng quát µ • p = biết µ σ -hữu hạn Cách xác định sai trường hợp khác Support hàm Lp Ta biết rằng, cho hàm f : Rn R, support f tập hợp spt(f ) := Bao đóng{x ∈ Rn : f (x) ̸= 0} = {x ∈ Ω : f (x) ̸= 0} (S) Định nghĩa khơng cịn phù hợp cho hàm f ∈ Lp (Rn ) Thật vậy, ta muốn khái niệm thỏa mãn tính chất sau f1 = f2 hầu khắp nơi Rn ⇒ spt(f1 ) = spt(f2 ), trừ số phần không đáng kể 32 Nhưng trường hợp khơng Thật Ví dụ: Cho f1 := χQ : R → R f2 ≡ Khi đó, rõ ràng f1 = f2 hầu khắp nơi R spt(f1 ) = Q = R spt(f2 ) = ∅ Mệnh đề 17 (Support thiết yếu cùa hàm) Cho f : Rn → R Ký hiệu Af := {ω ⊂ Rn : ω tập mở f = hầu khắp nơi ω} cho Af := ∪ω∈Af ω Khi Af tập mở f = hầu khắp nơi Af Tập đóng spte (f ) := Rn \ Af (ES) gọi support cần thiết f Rn Nhận xét (i) Từ định nghĩa (ES), suy ra, f1 = f2 hầu khắp nơi Rn , spte (f1 ) = spte (f2 ) (ii) Định nghĩa (S) (ES) giống hàm liên tục Chính xác Bài tập Nếu f : Rn → R liên tục, Rn \ Af = {x ∈ Rn : f (x) ̸= 0} Chứng minh mệnh đề ?? Hiển nhiên Af tập mở Ta chứng minh f (x) = hầu khắp nơi x ∈ Af (19) Từ Rn khơng gian metric tách được, thỏa mãn tiên đề thứ hai tính đếm (Định lý 14) Do tồn họ đếm tập mở U = {Ui : i ∈ N} thỏa mãn với tập mở Rn hợp phần tử đếm U Với ω ∈ Af , giả sử ω = ∪i∈Jω Ui 33 cho số phù hợp Jω ⊂ N cho J := ∪ω∈Af Jω Do Af = ∪i∈J Ui Từ f = hầu khắp nơi Ui với i ∈ J , theo (??) Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa 11 Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ?? ta có kết sau Mệnh đề 18 Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề 19 Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề ??, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) 34 Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho Pr(A2 , S2 ) = nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 35 ĐỊNH LÝ ROLLE Cơ sở định lý Rolle dựa hai định lý Weierstrass Fermat Định lý Weierstrass khẳng định hàm số f liên tục đoạn [a, b] bị chặn tồn giá trị lớn nhất, giá trị nhỏ đoạn Định lý Fermat điểm cực trị hàm khẳng định hàm f khả vi khoảng (a, b) đạt cực trị địa phương (cực đại địa phương cực tiểu địa phương) thuộc khoảng giá trị đạo hàm điểm cực trị địa phương không Định lý 15 (Định lý Rolle) Giả sử cho hàm số f liên tục [a, b], khả vi khoảng (a, b) f (a) = f (b) Khi tồn c ∈ (a, b) cho f ′ (c) = Chứng minh Vì f liên tục đoạn [a, b] Theo định lý Weierstrass hàm f phải tồn giá trị lớn giá trị nhỏ đoạn [a, b], nghĩa tồn x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a,b] Có hai khả xảy ra: 1) Nếu m = M Khi f (x) = const đoạn [a, b] Nên f ′ (c) = với c ∈ (a, b) 2) Nếu m < M Theo giả thiết ta có f (a) = f (b) nên hai điểm x1 , x2 phải thuộc khoảng (a, b) Khơng tính tổng quát ta giả sử x1 ∈ (a, b) Theo định lý Fermat đạo hàm điểm khơng Định lý chứng minh xong Ý nghĩa hình học định lý Rolle Cho C đường cong trơn với hai đầu mút A, B có "độ cao" (trong hệ trục tọa độ Descartes) C tồn điểm mà tiếp tuyến C điểm song song với AB(hay song song với trục hồnh f (a) = f (b)) 36 Hệ Nếu hàm số f (x) có đạo hàm khoảng (a, b) phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) phương trình f ′ (x) = có n − nghiệm phân biệt thuộc khoảng (a, b) (Phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) với (k = 1, 2, , n)) Chứng minh Giả sử phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) thứ tự x1 < x2 < < xn Khi ta áp dụng định lý Rolle cho n − đoạn [x1 , x2 ], [x2 , x3 ], , [xn−1 , xn ] phương trình f ′ (x) = có n − nghiệm thuộc n − khoảng (x1 , x2 ), (x2 , x3 ), , (xn−1 , xn ) Gọi n − nghiệm ξ1 , ξ2 , , ξn−1 ta có: f (ξ1 ) = f (ξ2 ) = = f (ξn−1 ) = Tiếp tục áp dụng định lý Rolle cho n−2 khoảng (ξ1 , ξ2 ), (ξ2 , ξ3 ), , (ξn−2 , ξn−1 ) phương trình f ′′ (x) = có n−2 nghiệm phân biệt khoảng (a, b) Tiếp tục trình sau k bước phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) Hệ Giả sử hàm số f (x) liên tục đoạn [a, b] có đạo hàm khoảng (a, b) Khi phương trình f ′ (x) = có khơng q n − nghiệm phân biệt khoảng (a, b) phương trình f (x) = có khơng q n nghiệm phân biệt khoảng Chứng minh Giả sử phương trình f (x) = có nhiều n nghiệm phân biệt khoảng (a, b), chẳng hạn n + nghiệm Khi theo hệ phương trình f ′ (x) = có n nghiệm thuộc khoảng (a, b) Điều trái với giả thiết phương trình f ′ (x) = có khơng n − nghiệm Ta có điều phải chứng minh 10 Vô hạn chiều Định nghĩa 12 (i) Không gian vector thực E gọi vô hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ 37 (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với không gian vector vơ hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách giữ (E, ∥.∥E ) Định lý 16 (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho khơng gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học Mệnh đề 20 (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (20) Từ M không gian con, theo (??), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (21) 38 Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 23 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề ??, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ Do dó ∥fhk ∥E ′ → k → ∞, ∀k ∈ N 39 nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E 11 Nhóm nhị diện Mệnh đề 21 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   2n   n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n   n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n n lẻ, n chẵn k ∤ , n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề ?? ta có |Rk | = n n = (n, k) k 40 Do  k Rk = ⟨r ⟩ =  n r

Ngày đăng: 05/07/2023, 15:04

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN