1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lý thuyết nevanlinna và ứng dụng cho đa thức vi phân

94 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: LÝ THUYẾT NEVANLINNA VÀ ỨNG DỤNG CHO ĐA THỨC VI PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Cùng với phát triển vượt bậc toán học ứng dụng, nhiều toán thực tế liên quan đến lý thuyết tối ưu, hệ phương trình địi hỏi cơng cụ giải tích khơng trơn mà cơng cụ giải tích cổ điển giải tích lồi khơng đáp ứng Gradient suy rộng, hay Dưới vi phân theo nghĩa Clarke, công cụ mạnh để xấp xỉ hàm Lipschitz mà dùng rộng rãi gần bốn thập kỷ qua Đây khái niệm mở rộng thực đạo hàm thông thường (trong trường hợp trơn) vi phân hàm lồi (trong trường hợp lồi) 850 2 Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề Các điều kiện sau tương đương vành R (1) R ∆U -vành; (2) Tất phần tử clean R ∆-clean Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Lấy r ∈ R clean, r = e + u Vì R ∆U -vành, ta có u = + a với a ∈ ∆(R) Lưu ý − 2e ∈ U (R) = + ∆(R), 2e ∈ ∆(R) Khi 2e + a ∈ ∆(R) r = e + + a = (1 − e) + (2e + a) biểu diễn ∆-clean r (2) ⇒ (1) Lấy u ∈ U (R) Khi u clean nên theo giả thiết u ∆-clean Giả sử u = e + a biểu diễn ∆-clean u với a ∈ ∆(R) e lũy đẳng Ta có = eu−1 + au−1 suy eu−1 = − au−1 khả nghịch R Vì e = Điều nghĩa u = + a ∈ + ∆(R) U (R) = + ∆(R) Định lý Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Nếu a ∈ R thỏa mãn a − a2 ∈ ∆(R), tồn tử phẩn tử lũy đẳng e ∈ R cho a − e ∈ ∆(R); (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Chứng minh (1) ⇔ (3) ⇔ (4) suy từ Mệnh đề ?? (1) ⇒ (2) Giả sử R clean ∆U -vành Khi đó, a ∈ R a − e ∈ ∆(R), với e lũy linh Tiếp theo ta chứng minh a − a2 ∈ ∆(R) Theo Mệnh đề ??, giả sử a = e + j biểu diễn ∆-clean a Khi a − a2 = (j − j ) − (ej + je) Chú ý j − j ∈ ∆(R) 2e ∈ ∆(R) Bây ta chứng minh ej + je ∈ ∆(R) Thậy vậy, ta có [ej(1 − e)]2 = = [(1 − e)je]2 theo Mệnh đề 13 ta ej − eje = ej(1 − e) ∈ ∆(R) je − eje = (1 − e)je ∈ ∆(R) Suy je − ej ∈ ∆(R) Vì ej + je = 2ej + (je − ej) ∈ ∆(R) (2) ⇒ (3) suy từ định nghĩa Rõ ràng Hệ ?? suy từ Định lý ?? Nghĩa vành đơn vị thỏa mãn tính chất ∆(R) = Cho vành R, phần tử a ∈ R gọi phần tử quy mạnh tồn x ∈ R thỏa mãn a = a2 x Một vành mà phần tử phần tử quy mạnh gọi vành quy mạnh Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành quy; (2) R ∆U -vành quy mạnh; (3) R ∆U -vành quy đơn vị; (4) R thỏa mãn tính chất x2 = x với x ∈ R (R vành Boolean) Chứng minh (1) ⇒ (2) Từ R quy, iđêan phải khác không chứa phần tử lũy đẳng khác không Ta R vành rút gọn R aben (nghĩa là, phần tử lũy đẳng R tâm) Giả sử R khơng phải vành rút gọn, tồn phần tử khác không a ∈ R thỏa mãn a2 = Theo Định lý 46, có phần tử lũy đẳng e ∈ RaR thỏa mãn eRe ∼ = M2 (T ), T vành khơng tầm thường Theo Mệnh đề 14 M2 (T ) ∆U -vành, điều mâu thuẫn Định lý 11 (2) ⇒ (3) Hiển nhiên (3) ⇒ (4) Cho x ∈ R Khi x = ue u ∈ U (R) e = e ∈ R Do R ∆U -vành, nên có u = hay y x = e, x lũy đẳng Chúng ta kết luận R vành Boolean (4) ⇒ (1) Hiển nhiên Một vành R gọi nửa quy R/J(R) quy phần tử lũy đẳng nâng lên modulo J(R) Vành R gọi vành biến đổi phần tử a ∈ R, tồn e2 = e ∈ aR thỏa mãn − e ∈ (1 − a)R Hoàn toàn tương tự, có kết sau: Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành nửa quy; (2) R ∆U -vành biến đổi; (3) R/J(R) vành Boolean Hệ Cho R ∆U -vành Khi đó, điều kiện sau tương đương (1) R vành nửa quy; (2) R vành biến đổi; (3) R vành clean Mở rộng Dorroh mở rộng tail ring ∆U -vành Mệnh đề Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề R[D, C] ∆U -vành D C ∆U -vành 3.1 Các nhóm vành Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành Mở rộng toán tử ∆ cho vành khơng có đơn vị Bây ta thay đổi định nghĩa ∆ để làm việc vành không chứa đơn vị Cụ thể, xét tập ∆◦ (R) = {r ∈ R|r + U◦ (R) ⊆ U◦ (R)} Khi R vành có đơn vị ∆◦ (R) = ∆(R) Với vành R bất kỳ, không thiết phải có đơn vị Ta ký hiệu R1 vành bao gồm R đơn vị Z Khi đó, U◦ (Z) = Ta dễ dàng kiểm tra bổ đề sau Bổ đề Cho R vành, khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Bổ đề rằng, ta mở rộng định nghĩa ∆ cho tất vành, khơng thiết phải có đơn vị khẳng định Định lý 31 tương đương với vành tùy ý Hơn nữa, điều kiện tương đương đúng, ∆(∆(R)) = ∆(R) Ta biết kết cổ điển Jacobsson J(R) vành J(eRe) = eJ(R)e, với e lũy đẳng R Ta dấu khơng cịn trường hợp tổng quát ∆(R) Tuy nhiên quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) giữ với giả thiết e∆(R)e ⊆ ∆(R) Trong Hệ 29 ta thêm vào giả thiết ∈ U (R) Cho R vành có đơn vị Phần tử a ∈ R gọi quy (tương ứng, quy đơn vị) R a = aua với u ∈ R (tương ứng, u ∈ U (R)) Nếu phần tử vành R quy (tương ứng, quy đơn vị) R gọi vành quy (tương ứng, vành quy đơn vị) Mệnh đề Cho R vành bất kỳ, ta có (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) khơng chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử quy đơn vị khác khơng Chứng minh (1) Nếu y ∈ U (eRe), y1 = y + (1 − e) ∈ U (R) thỏa mãn y = ey1 e Ta lấy r ∈ e∆(R)e ⊆ ∆(R) ta phần tử khả nghịch y ∈ U (eRe) ta có e − yr ∈ U (eRe) Như trên, lấy y1 = y+1−e ∈ U (R) Từ r ∈ e∆(R)e ⊆ ∆(R), ta 1−y1 r ∈ U (R) Do tồn phần tử b ∈ R thỏa mãn b(1 − y1 r) = e = eb(1 − y1 r)e = eb(e − y1 re)e = eb(e − (y + − e)re) = eb(e − yre) + eb(1 − e)re = ebe(e − yre), dấu cuối r ∈ eRe Điều cho thấy e − yre = e − yr phần tử khả nghịch trái eRe Từ − y1 r ∈ U (R) ta có (1 − y1 r)b = = (1 − (y + − e)r)b = (1 − yr)b Nhân hai vế với e ta e = e(1 − yr)be = (e − yr)be = (e − yr)ebe Điều có nghĩa ebe phần tử khả nghịch phải trái e − yr (2) Nếu e2 = e ∈ ∆(R), − e = e + (1 − 2e) ∈ U (R), − 2e khả nghịch, e = (3) Nếu a ∈ ∆(R) phần tử quy đơn vị, tồn phần tử khả nghịch u ∈ U (R) thỏa mãn au lũy đẳng Theo điều kiện (2) ta suy a phải không Hệ Cho R vành quy đơn vị, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Dưới số ví dụ mà ∆(R) ̸= J(R) Ví dụ (1) Ở Định lý 31, ta nhận thấy A vành vành R thỏa mãn U (R) = U (A), J(A) ⊆ ∆(R) Cụ thể chọn A miền giao hoán với J(A) ̸= R = A[x], ta = J(R) ⊂ J(A) ⊆ ∆(R) (xem [?], Bài tập 4.24) (2) ([?], Ví dụ 2.5) Cho R = F2 < x, y > / < x2 > Khi J(R) = U (R) = + F2 x + xRx Cụ thể, F2 x + xRx chứa ∆(R) J(R) = (3) Cho S vành tùy ý thỏa mãn J(S) = ∆(S) ̸= cho R = M2 (S) Khi đó, theo Định lý 30 (1), ∆(R) = J(R) = 0, đó, e = e11 ∈ R, e∆(R)e = eJ(R)e = J(eRe) = ∆(eRe) ≃ ∆(S) ̸= Điều quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) Mệnh đề ?? nghiêm ngặt trường hợp tổng quát (4) Cho A miền giao hoán với J(A) ̸= S = A[x] Khi đó, theo (1), ̸= J(A) ⊆ ∆(S) rõ ràng J(S) = R = M2 (S), A miền giao hốn địa phương Theo Định lý 30, ∆(R) = J(R) = Lưu ý, tâm Z = Z(R) R = M2 (S) đẳng cấu với S U (Z) = U (R) ∩ Z Do đó, = ∆(R) ∩ Z ⊆ ∆(Z) ≃ J(A) ̸= Do đó, quan hệ bao hàm Hệ 33 nghiêm ngặt J(R) = = J(Z(R)) Một vành R gọi 2-nguyên thủy tập phần tử lũy linh N (R) trùng với nguyên tố B(R), tức R/B(R) vành rút gọn Mệnh đề Giả sử R vành 2-nguyên thủy Khi ∆(R[x]) = ∆(R) + J(R[x]) Chứng minh Trước tiên ta giả sử R vành rút gọn Khi theo Hệ 43 ta có U (R[x]) = U (R) Do đó, theo định nghĩa ∆(R[x]), ta có ∆(R) ⊆ ∆(R[x]) Lấy a + a0 ∈ ∆(R[x]) a ∈ R[x]x a0 ∈ R Khi đó, u ∈ U (R), a + a0 + u ∈ U (R) Ta có a0 + u ∈ U (R) a = ∆(R) = ∆(R[x]) Bây ta giả sử R vành 2-nguyên thủy Rõ ràng B(R[x]) = B(R)[x] ⊆ J(R[x]) R vành 2-nguyên thủy R/B(R) vành rút gọn J(R[x]) = B(R[x]) = B(R)[x] Áp dụng phần đầu chứng minh cho R/B(R) Mệnh đề 30 (2) ta có ∆(R) + B(R)[x] = ∆(R/B(R)[x]) = ∆(R[x]/J(R[x])) = ∆(R[x])/J(R[x]) Ta có điều cần chứng minh Mở rộng toán tử ∆ cho vành khơng có đơn vị Bây ta thay đổi định nghĩa ∆ để làm việc vành không chứa đơn vị Cụ thể, xét tập ∆◦ (R) = {r ∈ R|r + U◦ (R) ⊆ U◦ (R)} Khi R vành có đơn vị ∆◦ (R) = ∆(R) Với vành R bất kỳ, khơng thiết phải có đơn vị Ta ký hiệu R1 vành bao gồm R đơn vị Z Khi đó, U◦ (Z) = Ta dễ dàng kiểm tra bổ đề sau Bổ đề Cho R vành, không thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Bổ đề rằng, ta mở rộng định nghĩa ∆ cho tất vành, không thiết phải có đơn vị khẳng định Định lý 31 tương đương với vành tùy ý Hơn nữa, điều kiện tương đương đúng, ∆(∆(R)) = ∆(R) Ta biết kết cổ điển Jacobsson J(R) vành J(eRe) = eJ(R)e, với e lũy đẳng R Ta dấu không trường hợp tổng quát ∆(R) Tuy nhiên quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) giữ với giả thiết e∆(R)e ⊆ ∆(R) Trong Hệ 29 ta thêm vào giả thiết ∈ U (R) Cho R vành có đơn vị Phần tử a ∈ R gọi quy (tương ứng, quy đơn vị) R a = aua với u ∈ R (tương ứng, u ∈ U (R)) Nếu phần tử vành R quy (tương ứng, quy đơn vị) R gọi vành quy (tương ứng, vành quy đơn vị) Mệnh đề Cho R vành bất kỳ, ta có (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác khơng (3) ∆(R) khơng chứa phần tử quy đơn vị khác không Chứng minh (1) Nếu y ∈ U (eRe), y1 = y + (1 − e) ∈ U (R) thỏa mãn y = ey1 e Ta lấy r ∈ e∆(R)e ⊆ ∆(R) ta phần tử khả nghịch y ∈ U (eRe) ta có e − yr ∈ U (eRe) Như trên, lấy 70 Do đó, theo Mệnh đề 34 Pr(Ui,j , Q4n ) = X 4n(n + i + 2) n+i+2 · |CQ4n (x)| = = 4n |Ui,j ||Q4n | i 4n 4n x∈Ui,j i Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm quaternion Q8 , tính độ giao hốn tương đối nhóm nhóm Q12 cách áp dụng Mệnh đề 15 Ví dụ (i) Với n = 2, xét nhóm quaternion Q8 (cho Ví dụ 8) Các nhóm Q8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; Q8 Khi 2+1 2+2 2·2+4 = , Pr(R2 , Q8 ) = = 1, Pr(R4 , Q8 ) = = 1; 2·2 2·2 4·2 2+2+2 Pr(U2,0 , Q8 ) = Pr(U2,1 , Q8 ) = = ; Pr(Q8 , Q8 ) = Pr(Q8 ) = 4·2 (ii) Với n = 3, xét nhóm quaternion Pr(R1 , Q8 ) = Q12 = {1, r, r2 , r3 , r4 , r5 , s, rs, r2 s, r3 s, r4 s, r5 s} Các nhóm Q12 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R3 = ⟨r3 ⟩, R6 = {1}; U3,0 = ⟨r3 , s⟩, U3,1 = ⟨r3 , rs⟩, U3,2 = ⟨r3 , r2 s⟩; Q12 Khi 3+1 2·3+2 = , Pr(R2 , Q12 ) = = , 2·3 4·3 3+3 2·3+6 = 1, Pr(R6 , Q12 ) = = 1; Pr(R3 , Q12 ) = 2·3 4·3 3+3+2 Pr(U3,0 , Q12 ) = Pr(U3,1 , Q12 ) = Pr(U3,2 , Q12 ) = = ; 4·3 Pr(Q12 , Q12 ) = Pr(Q12 ) = Pr(R1 , Q12 ) = 71 26 Định lý tồn cho hệ thống tuyến tính Định lý 28 (Định lý tồn cho hệ thống tuyến tính) Cho I đoạn thực giả sử A ∈ C(I, Mn (F)), B ∈ C(I, F n ) Cho τ ∈ I, ξ ∈ F n tồn giải pháp X (IV P) đoạn I Chứng minh Cho t ∈ I , giả sử J = [c; d] đoạn bị chặn I cho τ, π ∈ J , Bởi định lý 7.3 tồn hàm Xj khác biệt đoạn [a, b] cho XJt (s) = A(s)XJ (s) + B(s), XJ (τ ) = ξ, s∈J Định nghĩa X(t) = Xj(t) Nếu ta chọn J1 = [c1 , c2 ] ⊂ I cho τ, t ∈ J1 , J1 ∩ J đoạn bị chặn chứa τ, t kết áp dụng cho đoạn cho thấy XJ1 (s) = XJ (s), s ∈ J1 ∩ J Đặc biệt, XJ1 (t) = XJ (t) Để định nghĩa X(t) khơng phụ thuộc vào J chọn Vì X có tính khả vi [a, b] thỏa mãn X ′ (t) = A(t)X(t) + B(t), X(τ ) = ξ, t∈I Nó giải pháp (IV P) đoạn I Nó nhất, Y mơt giải pháp I t thuộc I có đoạn nhỏ J chứa τ, t kết cho J ngụ ý X(t) = Y (t) Trước tiếp tục phát triển lý thuyết, xem xét ví dụ khác Xét tốn với n = : x′ = 3t2 x, x(0) = 1, t∈R Phương trình tích phân tương ứng Z t 3s2 x(s)ds = (T x)(t), x(t) = + t ∈ R Nếu x0 (t) = 1, Z xm+1 (t) = + t 3s2 xm (s)ds, m = 0, 1, 72 Do Z x1 (t) = + t 3s2 ds = + t3 , t Z 3s2 [1 + s3 ]ds = + t3 + t6 /2, x2 (t) = + Z x3 (t)1 + t 3s2 [1 + s3 + s6 /2]ds = + t3 + t6 /2 + t9 /6, Và quy nạp cho thấy xm = + t3 + (t3 )m (t3 )2 (t3 )3 + + ··· + 3! m! Chúng ta nhận xm (i) môt tổng riêng cho việc triển khai dãy số hàm x(t) = et Dãy số hội tụ đến x(t) cho t thuộc R, hàm x(t) kết vấn đề Nhìn lại phương pháp chứng minh định lý 7.3, khơng khó để nhận thấy lựa chọn hàm liên tục ban đầu X0 (t) dần đến giải pháp X(t) Thực sự, bất đẳng thức áp dụng Z t |Xm+1 (t) − Xm | ≤ ∥A∥∞ |Xm (s) − Xm−1 (s)|ds, m ≥ 1, t ∈ I τ Sự khác biệt phát sinh khác biệt ban đầu Xi (t) − X0 (t) Ước lượng thu từ lập luận quy nạp sau trở thành h im |Xm+1 (t) − Xm | ≤ ∥X1 − X0 ∥∞ ∥A∥∞ [t − τ ] /m! Phần lại lập luận diễn trước đây, đưa giải pháp X(t) (7.2) Nếu (IV P) xem xét đoạn I nào, ta ước lượng khoảng cách Xm (t) X(t) đoạn nhỏ J = [a, b] nằm I chứa τ Với k > m ∥X − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥Xk − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥(Xk − Xk−1 ) + (Xk−1 − Xk−2 ) + · · · + (Xm+1 − Xm )∥∞,J 73 Và sử dụng bất đẳng thức tam giác lấy giới hạn (7.10) ngụ ý ∥X − Xm ∥∞,J ≤ ∞ X ∥Xk+1 − Xk ∥∞,J , (7.11) k=m ≤ ∥X1 − X0 ∥∞,J ∞ h X ∥A∥∞,J [b − τ ] im /m! k=m Tất nhiên, chuỗi cuối lại phần lại chuỗi cho hàm mũ (∥A∥∞,J [b − τ ]) Do (7.11) ngụ ý Xm → X định mức tối đa J Chúng tơi tóm tắt định lý sau Định lý 29 (Định nghĩa xấp xỉ liên tiếp bởi) Z t Xm+1 (t) = ξ + [A(s)Xm (s) + B(s)]ds, t∈I τ Tại X0 ∈ C(I, F n ) tùy ý Nếu X(t) giải pháp (IV P) I , Xm → X đồng ∥X − Xm ∥∞,J → 0, k→∞ Trên đoạn nhỏ J ⊂ I chứa τ 27 Tính liên tục giải pháp Trở lại tình Định lý 7.3, [a, b] đoạn đóng, giải pháp X(t) tốn giá trị ban đầu X ′ = A(t)X + B(t), X(τ ) = ξ, t ∈ I, IV P Rõ ràng phụ thuộc vào τ ∈ I, ξ ∈ F n , A ∈ C(I, Mn (F)) B ∈ C(I, F n ) Kết phần khẳng định t ∈ I Giá trị X(t) hàm liên tục biến Phân tích phụ thuộc bắt đầu ước lượng cho ∥X∥∞ điều suy cách sử dụng phương pháp chứng minh Định lý 7.3 Bắt đầu với việc xấp xỉ từ Z t X0 (t) = ξ + B(s)ds, τ 74 Kết X(t) = lim Xk (t) k→∞ Sau đáp ứng ước lượng   k−1 X (Xm+1 (t) − xm (t)) ∥X∥∞ = ∥ lim Xk ∥ = lim X0 (t) + k→∞ k→∞ m=0 ≤ ∥X0 ∥ + ∞ X ∞ ∥Xm+1 − Xm ∥∞ m=0 Bây áp dụng bất đẳng thức (7.8), cho kết ∥X∥∞ ≤ ∥X0 ∥∞ + ∥X0 ∥∞ ∞ X ∥A∥m+1 [b − τ ]m+1 ∞ m=0 (m + 1)! = ∥X0 (t)∥∞ exp(∥A∥∞ [b − τ ]) Từ Z t ∥X0 (t)∥∞ = ξ + B(s)ds τ ∞ ≤ |ξ| + |b − a|∥B∥∞ , Ước lượng mong muốn cho ∥X∥∞   ∥X∥∞ ≤ |ξ| + |b − a|∥B∥∞ exp(∥A∥∞ [b − a]) (7.12) Ước lượng đơn giản (7.12) sử dụng để X hàm liên tục chung tất biến Do đó, thay đổi nhỏ t, A, b, τ, ξ tạo thay đổi nhỏ X Nếu ký hiệu giải pháp (IV P) thời điểm t X(t, A, B, τ, ξ), sau đó, định lý 7.6 cung cấp ý nghĩa xác cho phát biểu X(s, C, D, σ, η) → X(t, A, B, τ, ξ), (s, C, D, σ, η) → (t, A, B, τ, ξ) Đó là, X liên tục (t, A, B, τ, ξ) 75 Định lý 30 Đặt I đoạn [a, b] bị chặn, A, C ∈ C(I, Mn (F)), B, D ∈ C(I, F n ), τ, σ ∈ I , ξη ∈ F n Giả định X kết X ′ = A(t)X + B(t), X(τ ) = ξ, t∈I Cho t thuộc I e > 0, có tồn ϵ > Y kết Y ′ = C(t)Y + D(t), y(σ) = η, t∈I |s − t| < δ, ∥C − A∥∞ < δ, |σ − τ | < δ, ∥D − B∥∞ < δ |η − ξ| < δ Vậy |Y (s) − X(t)| < ϵ (7.14) Chứng minh Hiệu hai phương trình cho X(t) Y (t) ta (Y − X)′ = C(t)(Y − X) + (C(t) − A(t))X + D(t) − B(t) Do Z = Y − X Z đáp ứng giá trị toán ban đầu Z ′ = C(t)Z + E(t), Z(σ) = η − X(σ) Nơi E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Chúng ta áp dụng đánh giá (7.12) cho Z thu   ∥Y − X∥∞ = ∥Z∥∞ ≤ |Z(σ)| + (b − a)∥E∥∞ exp(∥C∥∞ [b − a]) (7.15) Đặt e > cho Ta thấy |Y (s) − X(t)| < |Y (s) − X(s)| + |X(s) − X(t)| ≤ ∥Y − X∥∞ + |X(s) − X(t)| (7.16) Từ X liên tục t, cho e > có ϵ > |s − t| < δ1 Ngụ ý |X(s) − X(t)| < ϵ Mà |Z(σ)| = |η − X(σ)| ≤ |η − ξ| + |X(τ ) − X(σ)| 76 Từ X liên tục t, cho e > có ϵ2 > |η − ξ| < δ2 , Ngụ ý |τ − σ| < δ2 ϵ |Z(σ)| exp(∥C∥∞ [b − a]) < Cuối cùng, từ E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Có ϵ3 ∥C − A∥∞ < ϵ3 , Ngụ ý ∥D − B∥∞ < ϵ3 ϵ |b − a|∥E∥∞ exp(∥C∥[b − a]) < Và chọn δ > thoả mãn δ = min(δ1 , δ2 , δ3 ) Vậy (7.13) hợp lệ cho ϵ (7.14) sau từ (7.15)-(7.19) 28 Nhóm nhị diện Mệnh đề 42 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   2n n   + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) = n n lẻ, n chẵn k ∤ ,  n+1   n lẻ, 2n   n + n chẵn 2n 77 (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề ?? ta có |Rk | = Do  k Rk = ⟨r ⟩ = n n = (n, k) k  n r ⩽ l ⩽ − k kl Khi X X |CDn (x)| = |CDn (1)| + |CDn (rkl )| 1⩽l⩽ nk −1 x∈Rk Ta xét hai trường hợp n sau Trường hợp 1: n lẻ Theo Mệnh đề ?? ta có X kl |CDn (r )| = 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n x∈Rk k  n k  − |R1 | − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 34 ta có Pr(Rk , Dn ) = X 1 n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k 78 n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề ?? ta có n  X kl |CDn (r )| = k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n k x∈Rk − |R1 |  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 34, ta có X 1 n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề ?? ta có n  X X n  kl kl

Ngày đăng: 05/07/2023, 15:13

w