1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lý thuyết nevanlinna và ứng dụng cho đa thức vi phân

95 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 95
Dung lượng 533,73 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: LÝ THUYẾT NEVANLINNA VÀ ỨNG DỤNG CHO ĐA THỨC VI PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lịch sử bất đẳng thức bắt nguồn từ lâu xuyên suốt, thăng hoa qua thời gian cho tói tận ngày Có ba lí giải thích ln quan tâm tói bất đẳng thức Đó thực hành, lý thuyết, quan trọng thẩm mỹ - vẻ đẹp tồn mắt người quan tâm tói bất đẳng thức Trong vẻ đẹp xuyên qua lịch sử bất đẳng thức khơng thể khơng nhắc tới phận làm nên vẻ đẹp đó, bất đẳng thức tích phân Bất đẳng thức tích phân phần quan trọng tích phân có nhiều ứng dụng khơng tốn học mà cịn lĩnh vực khác Bất đẳng thức tích phân tốn khó thường xuất kì thi học sinh giỏi, Olympic tốn, Được hướng dẫn tận tình thầy TS Trần Thanh Tùng, tiếp cận hướng nghiên cứu chọn đề tài: “Bất đẳng thức Feng Qi dạng mở rộng” 183 2 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề ??, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề ?? Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 Nhóm quaternion suy rộng Mệnh đề Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n Pr(H, Q4n ) =  n+k   k | n, 2n   2n + k k ∤ n 4n (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề 20 ta có 2n 2n = (2n, k) k |Rk | = Do  2n r ⩽ i ⩽ −1 k  k Rk = ⟨r ⟩ = ik Ta xét hai trường hợp k sau Trường hợp 1: k | n Khi đó, theo Mệnh đề 21 ta có X X |CQ4n (x)| = |CQ4n (1)| + |CQ4n (rn )| + |CQ4n (rik) | 1⩽i⩽ 2n −1 k x∈Rk i̸= nk = 4n + 4n + = 8n +  2n k Do đó, theo Mệnh đề 3, ta có X Pr(Rk , Q4n ) = |Rk ||Q4n | x∈Rk  2n k  − |R1 |  − 2n = |CQ4n (x)| = 4n(n + k) k 4n(n + k) n+k = 2n k 2n 4n k ′ ′ ′ |ϱ(z+t)−ϱ(z)−tϱ (z)| = (ϱ (s) − ϱ (z))ds ≤ |t|ϵ(|t|), ∀z ∈ R, ∀t ∈ [−1, 1], z (6) phần dư ϵ : [0, +∞) → [0, +∞) xác định sau ϵ(τ ) := sup{|ϱ′ (s) − ϱ′ (z)| : s, z ∈ R, |s − z| ≤ τ } ∈ [0, ∞), τ ∈ [0, +∞) Hơn nữa, ϱ′ liên tục R nên lim ϵ(τ ) = (7) Mặt khác, cho K0 := spt(ϱ), ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y) = y ∈ / x + B(0, 1) − K0 , ∀t ∈ B(0, 1), x − y + t ∈ / K0 với t ∈ B(0, 1) Ký hiệu K := x + B(0, 1) − K0 , từ (15), ta suy |ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y)||f (y)| ≤ |t|ϵ(|t|)χK (y)|f (y)|, ∀y ∈ R, ∀t ∈ [−1, 1] (8) 33 Theo (14), (16), (17) định lý hội tụ bị trội, ta (13) (ii) Để đơn giản, ta ký hiệu ϱh ≡ ϱ Lưu ý, f ∗ ϱ : Rn → R liên tục, đo Đầu tiên, giả sử ≤ p < ∞ Khi Z Z Z p p (9) ∥f ∗ ϱ∥Lp (Rn ) = f (x − y)ϱ(y)dy |(f ∗ ϱ)(x)| dx = dx n n n R R R Nhớ lại Bài tập Cho h : Rn → Z R ϱ : Ω → [0, +∞) hàm đo Lebesgue giả sử ϱdx = Chứng minh với p ∈ Rn [1, +∞) p Z |h|ϱdx Z ≤ |h|p ϱdx Rn Rn Theo (18), tập định lý Fubini-Tonelli, suy Z  Z ∥f ∗ ϱ∥pLp (Rn ) ≤ |f (x − y)|p ϱ(y)dy dx Rn Rn Z Z |f (x − y)|p dx ϱ(y)dy =  ϱ(y)dy = |f (x)|p dx Rn Rn Rn Rn  Z Z = ∥f ∥pLp (Rn ) Bây cho p = ∞ Theo định nghĩa tích chập

Ngày đăng: 03/07/2023, 08:49

w