1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lý thuyết nevanlinna và ứng dụng cho đa thức

96 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: LÝ THUYẾT NEVANLINNA VÀ ỨNG DỤNG CHO ĐA THỨC VI PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Năm 1936, G Birkhoff giới thiệu nhóm tơpơ (xem [6]) Sau đó, khơng gian cầu trường được M M Choban đưa vào năm 1987 (xem [7]) Đến năm 1989, V V Uspenskij chứng minh nhóm tơpơ khơng gian cầu trường không gian cầu trường không nhóm tơpơ (xem [21]) Tiếp đó, A V Arhangel’skii M Tkachenko giới thiệu khái niệm nhóm paratơpơ, chứng minh số tính chất nhóm tơpơ nhóm paratơpơ, đồng thời nhóm tơpơ nhóm paratơpơ điều ngược lại khơng 848 2 Một số kết liên quan Trong toàn luận văn, ký hiệu J(R) Jacobson vành R U (R) tập hợp tất phần tử khả nghịch vành R có đơn vị Trong [?], tác giả định nghĩa vành R gọi U J -vành + J(R) = U (R) Cho S vành, khơng thiết phải có đơn vị, vị nhóm S◦ = (S, ◦) S tập hợp S với phép tốn ◦:S×S →S (x, y) 7→ x ◦ y = x + y − xy Mặt khác, S vành có đơn vị, S◦ đẳng cấu với vị nhóm (S, ) R với đẳng cấu ◦ : (S, ◦) → (S, ) x 7→ − x Cụ thể, y ∈ S khả nghịch vị nhóm S◦ (được gọi phần tử tựa khả nghịch hay phần tử tựa quy) − y phần tử khả nghịch vành S nhóm phần tử khả nghịch U (S) S đẳng cấu với nhóm U◦ (S) phần tử tựa khả nghịch S Phần tử nghịch đảo y S◦ gọi tựa nghịch đảo y Ta biết I = J(S) iđêan lớn S thỏa mãn U◦ (I) = I Bổ đề ([?], Bổ đề 1.1) Các điều kiện sau tương đương vành R cho: (1) U (R) = + J(R), hay R U J -vành; (2) U (R/J(R)) = {1}; (3) C(R) iđêan R (khi C(R) = J(R)), với C(R) tập phần tử tựa quy R; (4) rb − cr ∈ J(R), r ∈ R b, c ∈ C(R); (5) ru − vr ∈ J(R), u, v ∈ U (R) r ∈ R; (6) U (R) + U (R) ⊆ J(R) (khi U (R) + U (R) = J(R)) Một vành gọi hữu hạn Dedekind ab = ba = với a, b hai phần tử vành Mệnh đề ([?], Mệnh đề 1.3) Cho R U J -vành Khi (1) ∈ J(R); (2) Nếu R thể, R ∼ = F2 ; (3) R rút gọn (khơng có phần tử lũy linh khác khơng) R giao hốn; (4) Nếu x, y ∈ R thỏa mãn xy ∈ J(R) yx ∈ J(R) xRy, yRx ⊆ J(R); (5) Giả sử I ⊆ J(R) iđêan R Khi R U J -vành R/I U J -vành; (6) R hữu hạn Dedekind; Y (7) Vành Ri U J -vành vành Ri U J -vành với i∈I i ∈ I Một vành R gọi nửa địa phương vành thương R/J(R) tổng trực tiếp iđêan phải cực tiểu Mệnh đề ([?], Mệnh đề 1.4) Vành nửa địa phương R U J -vành R/J(R) ≃ F2 × × F2 Cho R vành có đơn vị Ta ký hiệu Mn (R) vành ma trận cấp n × n R Định lý ([?], Định lý 3) Cho R vành tùy ý, có đơn vị n > Khi đó, phần tử Mn (R) tổng ba phần tử khả nghịch Mn (R) Cho R vành có đơn vị, phần tử a ∈ R gọi clean a có biểu diễn a = e + u e phần tử lũy đẳng R, u phần tử khả nghịch R Ta ký hiệu Cl(R) tập tất phần tử clean vành R Một vành R gọi clean R = Cl(R) Hệ ([?], Hệ 1.7) Cho R vành Khi đó, điều kiện sau tương đương (i) R vành rút gọn; (ii) U (R[x]) = U (R); (iii) Cl(R[x]) = Cl(R) Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) Mệnh đề ([?], Mệnh đề 4.9 (2)) Cho R vành M song môđun R Gọi T (R, M ) mở rộng tầm thường Khi tập phần tử khả nghịch T (R, M ) U (T (R, M )) = T (U (R), M ) Một vành R gọi I -vành iđêan phải lũy linh khác khơng chứa phần tử lũy đẳng khác không Một hệ n2 phần tử {eij } vành R gọi hệ ma trận khả nghịch ( j ̸= j ′ eij ej ′ k = ejk j = j ′ Định lý ([?], Định lý 2.1) Cho R I -vành Nếu a phần tử lũy linh cấp n (nghĩa an = 0, an−1 ̸= 0) an−1 ∈ / J(R) iđêan (a) sinh a chứa hệ n ma trận khả nghịch So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều khơng gian vector vơ hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai không gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E khơng gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup Định lý (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng khơng gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E không gian Hilbert Nhóm quaternion suy rộng Mệnh đề Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn = 1, s−1 rs = r−1 ⟩ với n ⩾ H nhóm Q4n Khi (i) Nếu H = Rk với k|2n, ⩽ k ⩽ 2n Pr(H, Q4n ) =  n+k   k | n, 2n  2n + k  k ∤ n 4n (ii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Pr(H, Q4n ) = n+i+2 4n Chứng minh (i) Giả sử H = Rk với k|2n, ⩽ k ⩽ 2n Theo Mệnh đề 42 ta có 2n 2n = (2n, k) k |Rk | = Do  28 (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý 12 (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); ∥f − s∥Lp < ϵ (12) (13) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý ??), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ ∀x ∈ Ω (14) (15) 29 Từ (??) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (16) ∥sh − f ∥ ≤ 2f Ω, ∀h (17) Theo (??) (??), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = (18) h→∞ Cho ϵ > 0, từ (??), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (??) (??) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (??) (??), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (??) (??) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (19) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (20) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ Vì (??) (??) kết thúc chứng minh (21) ϵp 2p (22) 30 Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (23) Thật vậy, ta giả sử rằng, từ (??), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (24) Từ định lý ??, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < (25) D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (26) Do gợi ý (??) (??) ám (??) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (27) Theo (??) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh 31 (??) giữ Từ định lý ??, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (??) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (??) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý ??) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (28) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (29) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh e g (x) := , nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (??) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) 32 Theo (??), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (30) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (??), suy |f1 (x)| < ϵ sup (31) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (??) (??) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ) ( sup |f (x) − f1 (x)|, max |f1 (x)| sup < ϵ x∈Ωh0 +1 \Ωh0 x∈Ωh0 Như (??) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) khơng tách Ta tìm họ rời khơng đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa n o Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < a ∈ I := Ω Chú ý • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < Mặt khác ∥χωa − χωb ∥L∞ = a ̸= b, mâu thuẫn • I = Ω khơng đếm 1 + = 2 33 15 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hốn nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa ?? ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa 13 Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 34 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau 35 • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa ?? ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hoán tương đối ta có kết sau Mệnh đề 18 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh 36 Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 19 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề ??, ta có k X X |CG (x)| = |O(xi )||CG (xi )| Pr(H, G) = |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hoán tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề 9, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| 37 Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hốn tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề 20 Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề ?? ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ?? ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề ?? ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G 38 Theo Bổ đề ?? ta có |CH (y)| |C (y)| ⩾ G với y ∈ G |H| |G| Từ suy Pr(H, G) ⩾ X |CG (y)| X = |CG (y)| = Pr(G) |G| |G| |G| y∈G y∈G Vậy ta có điều phải chứng minh Mệnh đề sau cho ta điều kiện cần đủ để xảy đẳng thức Mệnh đề 21 Cho H nhóm nhóm G Khi (i) Pr(H, G) = Pr(H) G = HCG (x) với x ∈ H (ii) Pr(H, G) = Pr(G) G = HCG (x) với x ∈ G Chứng minh (i) Từ phép chứng minh Mệnh đề ?? ta thấy Pr(H, G) = Pr(H) |CG (x)| |CH (x)| = với x ∈ H |H| |G| Theo Bổ đề ??, điều xảy G = HCG (x) với x ∈ H Vậy ta có điều phải chứng minh (ii) Lập luận hoàn toàn tương tự ta có điều phải chứng minh Từ Mệnh đề ?? ta có hệ sau Hệ Cho H nhóm nhóm G Nếu Pr(H, G) = Pr(G) Pr(H) = Pr(G) Mệnh đề sau cho ta điều kiện đủ để không xảy đẳng thức Mệnh đề ?? Mệnh đề 22 Cho H nhóm nhóm G Nếu H khơng chuẩn tắc G Pr(G) < Pr(H, G) < Pr(H) 39 Chứng minh Giả sử H không chuẩn tắc G Trước tiên ta chứng minh tồn x ∈ H cho G ̸= HCG (x) Thật vậy, giả sử trái lại G = HCG (x) với x ∈ H Lấy g ∈ G x ∈ H Khi g −1 ∈ G = HCG (x) Giả sử g −1 = với h ∈ H, a ∈ CG (x) Khi ta có g −1 xg = (ha)x(ha)−1 = haxa−1 h−1 = hxaa−1 h−1 = hxh−1 ∈ H Điều chứng tỏ H ◁ G, trái với giả thiết Vậy ta có điều phải chứng minh Do đó, theo Bổ đề ?? ta có Pr(H, G) ̸= Pr(H) Pr(H, G) ̸= Pr(G) Kết hợp điều với Mệnh đề ?? ta có bất đẳng thức cần chứng minh 16 Nhóm nhị diện Mệnh đề 23 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   2n n   + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n   n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n n lẻ, n chẵn k ∤ , n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n 40 Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề 39 ta có |Rk | = Do  k Rk = ⟨r ⟩ = n n = (n, k) k  n r

Ngày đăng: 03/07/2023, 08:49

w