1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lý thuyết nevanlinna và ứng dụng cho đa thức viphân

126 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 126
Dung lượng 645,25 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: LÝ THUYẾT NEVANLINNA VÀ ỨNG DỤNG CHO ĐA THỨC VI PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Mơ hình tốn học phương thức sử dụng ngơn ngữ tốn để mơ tả hệ thống, tượng tự nhiên sống, đặc biệt sử dụng nhiều ngành khoa học tự nhiên chuyên ngành kỹ thuật (ví dụ: vật lý, sinh học, kỹ thuật điện tử) đồng thời khoa học xã hội (như kinh tế, xã hội học khoa học trị) Các kỹ sư, nhà khoa học sử dụng mơ hình tốn học cơng cụ nghiên cứu Các mơ hình đưa mơ tả vấn đề sống mà chúng biểu thị dạng phương trình tốn học, phương trình sai phân, hệ phương trình tuyến tính phải kể đến vấn đề miêu tả phương trình vi phân hệ phương trình vi phân 685 2 ĐỊNH LÍ FUBINI Định lý (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Z n R ∋ x 7→ F (x, y)dy Rn đo (đối với Mn ) (ii) F (x, y)dy dx F (x, y)dxdy = R2n Rn  Z Z Z Rn Z Z F (x, y)dx dy = Rn  Rn Bổ đề Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (1) Mặt khác, h ∈ N thỏa 1/h < δ x ∈ K , theo (19), Z |(f ∗ ϱh )(x) − f (x)| = ! ! m ∞ X X = ϕ χ E − χEh = ϕ χEh

Ngày đăng: 03/07/2023, 08:49

w