1. Trang chủ
  2. » Luận Văn - Báo Cáo

Định lý krein rutman và các mở rộng

116 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 116
Dung lượng 621,54 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ĐỊNH LÝ KREIN - RUTMAN VÀ CÁC MỞ RỘNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lý thuyết dao động nghiệm hệ phương trình vi phân có đối số lệch nghiên cứu rầm rộ năm 80 trở lại Càng ngày người ta thấy có nhiều ứng dụng thực tế Đặc biệt lĩnh vực: Vật lý, Sinh học, Sinh lý học, Sinh thái học Đóng góp nhiều cho lĩnh vực phải kể đến Gyori, Ferreira, Arino, Gopalsamy Ladas Các tác giả nghiên cứu dao động nghiệm hệ phương trình vi phân có đối số lệch theo hướng hệ phương trình vi phân có đối số lệch tuyến tính sở phương trình đặc trưng Từ với hệ phương trình cụ thể thực tế xét dựa vào hệ phương trình tuyến tính hóa (linearized equation) 288 2 Các cận cho độ giao hoán tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hoán tương đối nhóm nhóm Mệnh đề Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| + |H| |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề ?? ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H |CG (x)| + x∈K = |K||G| + X |CG (x)| x∈H\K |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do p(|H| − |K|) ⩽ X |CG (x)| ⩽ (|H| − |K|) x∈H\K |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hốn tương đối nhóm nhóm giao hốn Kết sau cho ta cận cho độ giao hoán tương đối nhóm một nhóm khơng giao hốn Mệnh đề Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = 1 X |CG (x)| = |H||G| = |H||G| |H||G| x∈H (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý 47 ta |H| + |H| |Z(G) ∩ H| + |H| Pr(H, G) ⩽ ⩽ = |H| |H| Giả sử H không nhóm giao hốn Khi theo Mệnh đề ?? ta có Pr(H) ⩽ Do đó, theo Định lý ?? ta có Pr(H, G) ⩽ Pr(H) ⩽ Vậy ta có điều phải chứng minh Kết sau mơ tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề 48 Mệnh đề Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H khơng giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý 47 ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề 48 (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| thiết Do = 2, H/(Z(G) ∩ H) ∼ = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| H/(Z(G) ∩ H) ∼ = Z2 × Z2 Nhóm nhị diện Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   n n lẻ, n chẵn k ∤ , 2n   n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n n   + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề ta có |Rk | = Do k  Rk = ⟨r ⟩ = n n = (n, k) k  n r 62 n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề ta có n  X kl |CDn (r )| = k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n k x∈Rk − |R1 |  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề ??, ta có X 1 n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề ta có n  X X n  kl kl |CDn (r )| = CDn r + |CDn (r )| = |Dn |+ − |R1 | k n n Pr(Rk , Dn ) = 1⩽l⩽ k −1 1⩽l⩽ k −1 n l̸= 2k Từ suy X |CDn (x)| = |Dn | + |Dn | + x∈Rk = 2n + 2n + n k n k  − |R1 |  −2 n= n(n + 2k) k Áp dụng Mệnh đề ?? ta có Pr(Rk , Dn ) = X 1 n(n + 2k) n + 2k |CDn (x)| = n = |Rk ||Dn | k 2n 2n x∈Rk k Vậy ta có điều phải chứng minh (ii) Giả sử H = Tl với ⩽ l ⩽ n − Theo Mệnh đề 8, |Tl | = Tl = ⟨rl s⟩ = {1, rl s} Theo Mệnh đề ??, ta có Pr(Tl , Dn ) = X 1 |CDn (x)| = (|CDn (1)| + |CDn (rl s)|) |Tl ||Dn | · 2n x∈Tl = (|Dn | + |CDn (rl s)|) 4n 63 Ta áp dụng Mệnh đề cho hai trường hợp n sau Nếu n lẻ |CDn (rl s)| = |Tl | = Từ suy n+1 (2n + 2) = 4n Pr(Tl , Dn ) = Nếu n chẵn, giả sử m = n |CDn (rl s)| = |Um,l | = 2n 2n = = (n, m) m Từ suy n+2 (2n + 4) = 4n 2n Pr(Tl , Dn ) = Vậy ta có điều phải chứng minh (iii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Theo Mệnh đề ta có |Ui,j | = Do Ui,j = ⟨ri , rj s⟩ = Khi X |CDn (x)| = |CDn (1)| + x∈Ui,j  2n 2n = (n, i) i  n il il+j r ,r s 0⩽l ⩽ −1 i X 1⩽l⩽ X |CDn (ril )| + n −1 i 0⩽l⩽ Ta xét hai trường hợp n Trường hợp 1: n lẻ Khi đó, theo Mệnh đề ta có n  n X il |CDn (r )| = n 1⩽l⩽ −1 i X 0⩽l⩽ Từ suy X x∈Ui,j i − |R1 | = n |CDn (ril+j s)| = n −1 i |CDn (x)| = 2n + n n i i |CDn (ril+j s)| n −1 i  −1 , n 2n |Til+j | = i i  −1 + 2n n(n + i + 2) = i i 64 Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | |CDn (x)| = x∈Ui,j n(n + i + 2) n+i+2 = 2n i 4n 2n i Trường hợp 2: n chẵn Ta xét hai trường hợp i n Trường hợp 2a: i ∤ Khi đó, theo Mệnh đề ta có  n  n X |CDn (ril )| = i 1⩽l⩽ ni −1 X − |R1 | = n |CDn (ril+j s)| = 0⩽l⩽ ni −1 Từ suy X |CDn (x)| = 2n + n n x∈Ui,j Áp dụng Mệnh đề ?? ta có X Pr(Ui,j , Dn) = |Ui,j ||Dn | i i −1 , 4n n U n2 ,il+j = i i  −1 + |CDn (x)| = x∈Ui,j 4n n(n + i + 4) = i i n+i+4 n(n + i + 4) = 2n i 4n 2n i

Ngày đăng: 05/07/2023, 15:04