Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 113 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
113
Dung lượng
622,97 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ĐA THỨC ĐỐI XỨNG VÀ ỨNG DỤNG TRONG ĐẠI SỐ LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Luận văn đề cập tới việc khảo sát tồn nghiệm, thuật giải lặp cấp hai, khai triển tiệm cận nghiệm theo tham số bé cho hệ phương trình hàm phi tuyến = [a,b] khoảng không bị chặn IR Nội dung luận văn nằm chương 3, 4, Trong chương 3, chứng minh tồn tại, nghiệm hệ phương trình hàm cầu đóng C(;IRn ).Kết thu chứa đựng kết C.Q Wu, Q.W Xuan, D.Y Zhu khảo sát trường hợp = [-b,b], m = n = 2, ank = Sijk nhị 879 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa Cho R vành có đơn vị 1R Một R-môđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-môđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -mơđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) Định nghĩa Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-môđun phải với phép toán cộng nhân hạn chế A Định nghĩa (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai mơđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Mơđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, môđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân mơđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-môđun phải Định nghĩa M/N xác định Định lý ?? gọi môđun thương mơđun M mơđun N Nhóm nhị diện Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) = n+k 2n n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) = n+1 n lẻ, 2n n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) = n+i+2 4n n n lẻ, n chẵn k ∤ , n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề 55 ta có |Rk | = Do k Rk = ⟨r ⟩ = n n = (n, k) k n r |ϱ(z+t)−ϱ(z)−tϱ′ (z)| = (ϱ′ (s) − ϱ′ (z))ds ≤ |t|ϵ(|t|), ∀z ∈ R, ∀t ∈ [−1, 1], z (20) phần dư ϵ : [0, +∞) → [0, +∞) xác định sau ϵ(τ ) := sup{|ϱ′ (s) − ϱ′ (z)| : s, z ∈ R, |s − z| ≤ τ } ∈ [0, ∞), τ ∈ [0, +∞) Hơn nữa, ϱ′ liên tục R nên (21) lim ϵ(τ ) = Mặt khác, cho K0 := spt(ϱ), ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y) = y ∈ / x + B(0, 1) − K0 , ∀t ∈ B(0, 1), x − y + t ∈ / K0 với t ∈ B(0, 1) Ký hiệu K := x + B(0, 1) − K0 , từ (26), ta suy |ϱ(x − y + t) − ϱ(x − y) − tϱ′ (x − y)||f (y)| ≤ |t|ϵ(|t|)χK (y)|f (y)|, ∀y ∈ R, ∀t ∈ [−1, 1] (22) Theo (25), (27), (28) định lý hội tụ bị trội, ta (24) (ii) Để đơn giản, ta ký hiệu ϱh ≡ ϱ Lưu ý, f ∗ ϱ : Rn → R liên tục, đo Đầu tiên, giả sử ≤ p < ∞ Khi Z Z Z p dx ∥f ∗ ϱ∥Lp (Rn ) = |(f ∗ ϱ)(x)|p dx = f (x − y)ϱ(y)dy (23) n n n R R R Nhớ lại Bài tập Cho h : Rn → Z R ϱ : Ω → [0, +∞) hàm đo Lebesgue giả sử ϱdx = Chứng minh với p ∈ Rn [1, +∞) Z p |h|ϱdx Rn Z ≤ Rn |h|p ϱdx 36 Theo (29), tập định lý Fubini-Tonelli, suy Z Z ∥f ∗ ϱ∥pLp (Rn ) ≤ |f (x − y)|p ϱ(y)dy dx ZR n = Rn Z p |f (x − y)| dx ϱ(y)dy Rn Rn Z = Z p |f (x)| dx ϱ(y)dy Rn Rn = ∥f ∥pLp (Rn ) Bây cho p = ∞ Theo định nghĩa tích chập