1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương trình vi phân phân đối số lệnh loại trung hòa

122 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 122
Dung lượng 651,77 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: PHƯƠNG TRÌNH VI PHÂN PHÂN ĐỐI SỐ LỆNH LOẠI TRUNG HỊA LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lý thuyết điều khiển ứng dụng nhiều ngành khoa học khác nhau, chẳng hạn Giải tích số, Lý thuyết điều khiển mạch điện tử, Vật lý, Bài toán truyền nhiệt Các đối tượng nghiên cứu đối tượng thường mơ hệ phương trình vi phân đại số, việc nghiên cứu tính điều khiển vấn đề cần thiết nhiều nhà toán học quan tâm Các kết nghiên cứu hệ điều khiển ứng dụng ngày nhiều lĩnh vực khác nhau, Vật lý Vì vấn đề nghiên cứu tính điều khiển hệ mơ tả phát triển mạnh mẽ theo lý thuyết ứng dụng 128 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép tốn nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 2.0.1 Định lý đồng cấu vành Định nghĩa Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo tồn hai phép tốn cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 2.0.2 Một số kết liên quan Định lý tồn cho hệ thống tuyến tính Định lý (Định lý tồn cho hệ thống tuyến tính) Cho I đoạn thực giả sử A ∈ C(I, Mn (F)), B ∈ C(I, F n ) Cho τ ∈ I, ξ ∈ F n tồn giải pháp X (IV P) đoạn I Chứng minh Cho t ∈ I , giả sử J = [c; d] đoạn bị chặn I cho τ, π ∈ J , Bởi định lý 7.3 tồn hàm Xj khác biệt đoạn [a, b] cho XJt (s) = A(s)XJ (s) + B(s), XJ (τ ) = ξ, s∈J Định nghĩa X(t) = Xj(t) Nếu ta chọn J1 = [c1 , c2 ] ⊂ I cho τ, t ∈ J1 , J1 ∩ J đoạn bị chặn chứa τ, t kết áp dụng cho đoạn cho thấy XJ1 (s) = XJ (s), s ∈ J1 ∩ J Đặc biệt, XJ1 (t) = XJ (t) Để định nghĩa X(t) khơng phụ thuộc vào J chọn Vì X có tính khả vi [a, b] thỏa mãn X ′ (t) = A(t)X(t) + B(t), X(τ ) = ξ, t∈I Nó giải pháp (IV P) đoạn I Nó nhất, Y mơt giải pháp I t thuộc I có đoạn nhỏ J chứa τ, t kết cho J ngụ ý X(t) = Y (t) Trước tiếp tục phát triển lý thuyết, xem xét ví dụ khác Xét tốn với n = : x′ = 3t2 x, x(0) = 1, t∈R Phương trình tích phân tương ứng Z t 3s2 x(s)ds = (T x)(t), x(t) = + t ∈ R Nếu x0 (t) = 1, t Z 3s2 xm (s)ds, xm+1 (t) = + m = 0, 1, Do Z x1 (t) = + t 3s2 ds = + t3 , t Z 3s2 [1 + s3 ]ds = + t3 + t6 /2, x2 (t) = + Z x3 (t)1 + t 3s2 [1 + s3 + s6 /2]ds = + t3 + t6 /2 + t9 /6, Và quy nạp cho thấy xm = + t3 + (t3 )m (t3 )2 (t3 )3 + + ··· + 3! m! Chúng ta nhận xm (i) môt tổng riêng cho việc triển khai dãy số hàm x(t) = et Dãy số hội tụ đến x(t) cho t thuộc R, hàm x(t) kết vấn đề Nhìn lại phương pháp chứng minh định lý 7.3, khơng khó để nhận thấy lựa chọn hàm liên tục ban đầu X0 (t) dần đến giải pháp X(t) Thực sự, bất đẳng thức áp dụng Z t |Xm+1 (t) − Xm | ≤ ∥A∥∞ |Xm (s) − Xm−1 (s)|ds, τ m ≥ 1, t ∈ I Sự khác biệt phát sinh khác biệt ban đầu Xi (t) − X0 (t) Ước lượng thu từ lập luận quy nạp sau trở thành h im |Xm+1 (t) − Xm | ≤ ∥X1 − X0 ∥∞ ∥A∥∞ [t − τ ] /m! Phần lại lập luận diễn trước đây, đưa giải pháp X(t) (7.2) Nếu (IV P) xem xét đoạn I nào, ta ước lượng khoảng cách Xm (t) X(t) đoạn nhỏ J = [a, b] nằm I chứa τ Với k > m ∥X − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥Xk − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥(Xk − Xk−1 ) + (Xk−1 − Xk−2 ) + · · · + (Xm+1 − Xm )∥∞,J Và sử dụng bất đẳng thức tam giác lấy giới hạn (7.10) ngụ ý ∥X − Xm ∥∞,J ≤ ∞ X ∥Xk+1 − Xk ∥∞,J , (7.11) k=m ≤ ∥X1 − X0 ∥∞,J ∞ h X ∥A∥∞,J [b − τ ] im /m! k=m Tất nhiên, chuỗi cuối lại phần lại chuỗi cho hàm mũ (∥A∥∞,J [b − τ ]) Do (7.11) ngụ ý Xm → X định mức tối đa J Chúng tơi tóm tắt định lý sau Định lý (Định nghĩa xấp xỉ liên tiếp bởi) Z t Xm+1 (t) = ξ + [A(s)Xm (s) + B(s)]ds, t∈I τ Tại X0 ∈ C(I, F n ) tùy ý Nếu X(t) giải pháp (IV P) I , Xm → X đồng ∥X − Xm ∥∞,J → 0, Trên đoạn nhỏ J ⊂ I chứa τ k→∞ Tính liên tục giải pháp Trở lại tình Định lý 7.3, [a, b] đoạn đóng, giải pháp X(t) toán giá trị ban đầu X ′ = A(t)X + B(t), t ∈ I, IV P X(τ ) = ξ, Rõ ràng phụ thuộc vào τ ∈ I, ξ ∈ F n , A ∈ C(I, Mn (F)) B ∈ C(I, F n ) Kết phần khẳng định t ∈ I Giá trị X(t) hàm liên tục biến Phân tích phụ thuộc bắt đầu ước lượng cho ∥X∥∞ điều suy cách sử dụng phương pháp chứng minh Định lý 7.3 Bắt đầu với việc xấp xỉ từ Z t X0 (t) = ξ + B(s)ds, τ Kết X(t) = lim Xk (t) k→∞ Sau đáp ứng ước lượng   k−1 X ∥X∥∞ = ∥ lim Xk ∥ = lim X0 (t) + (Xm+1 (t) − xm (t)) k→∞ k→∞ m=0 ≤ ∥X0 ∥ + ∞ X ∞ ∥Xm+1 − Xm ∥∞ m=0 Bây áp dụng bất đẳng thức (7.8), cho kết ∥X∥∞ ≤ ∥X0 ∥∞ + ∥X0 ∥∞ ∞ X ∥A∥m+1 [b − τ ]m+1 ∞ m=0 (m + 1)! = ∥X0 (t)∥∞ exp(∥A∥∞ [b − τ ]) Từ Z t ∥X0 (t)∥∞ = B(s)ds ξ + τ ≤ |ξ| + |b − a|∥B∥∞ , ∞ Ước lượng mong muốn cho ∥X∥∞   ∥X∥∞ ≤ |ξ| + |b − a|∥B∥∞ exp(∥A∥∞ [b − a]) (7.12) Ước lượng đơn giản (7.12) sử dụng để X hàm liên tục chung tất biến Do đó, thay đổi nhỏ t, A, b, τ, ξ tạo thay đổi nhỏ X Nếu ký hiệu giải pháp (IV P) thời điểm t X(t, A, B, τ, ξ), sau đó, định lý 7.6 cung cấp ý nghĩa xác cho phát biểu X(s, C, D, σ, η) → X(t, A, B, τ, ξ), (s, C, D, σ, η) → (t, A, B, τ, ξ) Đó là, X liên tục (t, A, B, τ, ξ) Định lý Đặt I đoạn [a, b] bị chặn, A, C ∈ C(I, Mn (F)), B, D ∈ C(I, F n ), τ, σ ∈ I , ξη ∈ F n Giả định X kết X ′ = A(t)X + B(t), X(τ ) = ξ, t∈I Cho t thuộc I e > 0, có tồn ϵ > Y kết Y ′ = C(t)Y + D(t), y(σ) = η, t∈I |s − t| < δ, ∥C − A∥∞ < δ, |σ − τ | < δ, ∥D − B∥∞ < δ |η − ξ| < δ Vậy |Y (s) − X(t)| < ϵ (7.14) Chứng minh Hiệu hai phương trình cho X(t) Y (t) ta (Y − X)′ = C(t)(Y − X) + (C(t) − A(t))X + D(t) − B(t) Do Z = Y − X Z đáp ứng giá trị toán ban đầu Z ′ = C(t)Z + E(t), Z(σ) = η − X(σ) Nơi E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Chúng ta áp dụng đánh giá (7.12) cho Z thu   ∥Y − X∥∞ = ∥Z∥∞ ≤ |Z(σ)| + (b − a)∥E∥∞ exp(∥C∥∞ [b − a]) (7.15) Đặt e > cho Ta thấy |Y (s) − X(t)| < |Y (s) − X(s)| + |X(s) − X(t)| ≤ ∥Y − X∥∞ + |X(s) − X(t)| (7.16) Từ X liên tục t, cho e > có ϵ > |s − t| < δ1 Ngụ ý |X(s) − X(t)| < ϵ Mà |Z(σ)| = |η − X(σ)| ≤ |η − ξ| + |X(τ ) − X(σ)| Từ X liên tục t, cho e > có ϵ2 > |η − ξ| < δ2 , Ngụ ý |τ − σ| < δ2 ϵ |Z(σ)| exp(∥C∥∞ [b − a]) < Cuối cùng, từ E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Có ϵ3 ∥C − A∥∞ < ϵ3 , Ngụ ý ∥D − B∥∞ < ϵ3 ϵ |b − a|∥E∥∞ exp(∥C∥[b − a]) < Và chọn δ > thoả mãn δ = min(δ1 , δ2 , δ3 ) Vậy (7.13) hợp lệ cho ϵ (7.14) sau từ (7.15)-(7.19) 48 suy (??) Lưu ý: Nếu p = ∞ đánh giá trước, (??) khơng cịn giữ Theo định lý Radon-Nikodym cho độ đo dấu, tồn M-hàm đo u : Ω → R với u+ u− ∈ L1 (Ω) cho Z ϕ(χE ) = ν(E) = udx, ∀E ∈ M (18) E Thực thỏa mãn u ∈ L1 (Ω) Thật vậy, cho En+ := {x ∈ Ω : u(x) ≥ 0} En− := {x ∈ Ω : u(x) ≤ 0} Từ (??) ta Z 0≤ Z ± u dx = En± Ω udx = ν(En± ) < ∞ Do u± ∈ L1 (Ω) Từ tuyến tính ϕ tích phân, rõ ràng Z ϕ(s) = (19) u s dx Ω với hàm đơn giản đo s : Ω → R Để kết luận, cần chứng minh ′ u ∈ Lp (Ω), ∀p ∈ [1, ∞) (20) Thật vậy, với f ∈ Lp (Ω), theo xấp xỉ hàm đơn giản (Định lý 14), tồn dãy sh : Ω → R, (h = 1, 2, ) hàm đơn gian đo thỏa mãn sh → f Lp (Ω) (21) Từ (??), (??) bất đẳng thức Holder, suy Z u(sh − f )dx ≤ ∥u∥ p′ ∥f − sh ∥Lp (Ω) → L (Ω) Ω Điều kiện (??), (??) tính liên tục ϕ cho Z Z ϕ(f ) = lim ϕ(sh ) = lim h→∞ u f dx, ∀f ∈ Lp (Ω) u sh dx = h→∞ Ω ′ Đặc biệt, tồn u ∈ Lp (Ω) cho T (u) = ϕ Ω (22) 49 Ta điều phải chứng minh Ta chứng minh (??) Trong trường hợp p = 1, giả sử M > cho EM := {x ∈ Ω : u(x) > M } Khi Z udx = ϕ(χEM ) ≤ ∥ϕ∥(Lp (Ω))′ |EM | M |EM | ≤ EM Vì |EM | = M > ∥ϕ∥(Lp (Ω))′ , từ ta suy ≤ u+ (x) ≤ ∥ϕ∥(Lp (Ω))′ hầu khắp nơi x ∈ Ω ⇔ ∥u+ ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ Tương tự ∥u− ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ ′ u = u+ − u− ∈ L∞ (Ω) = L1 (Ω) Trong trường hợp < p < ∞, theo xấp xỉ hàm đơn giản, cho (sh ) dãy hàm đơn giản đo cho ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ |u| Ω, (23) lim sh (x) = |u(x)|, ∀x ∈ Ω (24) h→∞ Bây ta chứng minh ước lượng quan trọng sau ∥sh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (25) Tập hợp ′ uh (x) := |sh (x)|p −1 sign(u(x)) x ∈ Ω Khi (uh ) dãy hàm đơn giản Z Z (??) ′ ∥sh ∥pLp′ (Ω) p′ |sh | dx ≤ = Ω Ω ′ shp −1 |u|dx Z (??) = uh u dx = ϕ(uh ) Ω Z ≤ ∥ϕ∥(Lp (Ω))′ ∥uh ∥Lp (Ω) = ∥ϕ∥(Lp (Ω))′ ′ |sh |(p −1)p dx Ω Z = ∥ϕ∥(Lp (Ω))′ p′  p1 |sh | dx Ω p′ p Lp (Ω) = ∥ϕ∥(Lp (Ω))′ ∥sh ∥  p1 50 Nếu ∥sh ∥Lp′ (Ω) = 0, (??) hiển nhiên Nếu ∥sh ∥Lp′ (Ω) > 0, bất p′ p p′ đẳng thức (??) chia cho ∥sh ∥L (Ω) p ý p′ (1 − ) = Từ (??), (??) bổ đề Fatou ta có Z Z ′ p ∥u∥L = p′ (Ω) ′ h→∞ Ω ′ ′ |u|p dx ≤ lim inf Ω ′ |sh |p dx = lim inf ∥sh ∥pLp′ (Ω) ≤ ∥ϕ∥p(Lp (Ω))′ < ∞ h→∞ Do (??) < p < ∞ Bước 3: Giả sử |Ω| = ∞ ta chứng minh T is still onto Cho (Ω)h dãy tăng tập bị chặn cho Ω = ∪∞ h=1 Ωh ′ Ta đồng ý với nhận định Lp (Ωh ) Lp (Ωh ), (h = 1, 2, ) với không gian ′ Lp (Ω) Lp (Ω) bao gồm hàm khuyết bên Ωh Đặc biệt, với ϕ ∈ (Lp (Ω))′ suy ϕ ∈ (Lp (Ω))′ ∥ϕ∥(Lp (Ωh ))′ ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (26) ′ Từ bước 2, với h, tồn uh ∈ Lp (Ωh ) cho ∥uh ∥Lp′ (Ω) = ∥ϕ∥(Lp (Ωh ))′ Z ϕ(f ) = uh f dx, ∀f ∈ Lp (Ωh ) (27) (28) Ωh Chú ý từ Lp (Ωh ) ⊂ Lp (Ωh+1 ), theo tính uh+1 = uh hầu khắp nơi Ωh Vì vậy, suy định nghĩa hàm u : Ω → R u(x) := uh (x) x ∈ Ωh Từ (??), (??) định lý đơn điệu hội tụ ∥u∥Lp′ (Ω) = lim ∥u∥Lp′ (Ωh ) = lim ∥uh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ < ∞, h→∞ ′ h→∞ u ∈ Lp (Ω) Hơn nữa, f ∈ Lp (Ω), theo định lý tính hội tụ trội f χΩh → f LP (Ω), 51 thế, theo tính liên tục ϕ (??), Z ϕ(f ) = lim ϕ(f χΩh ) = lim h→∞ h→∞ Z u f dx = Ωh u f dx Ω Ta hoàn tất chứng minh Nhận xét 10 Định lý biểu diễn Riesz mở rộng đến không gian đo (X, M, µ) Chính xác hơn, ta xác định ′ Lp (X, µ) ≡ (Lp (X, µ))′ cịn giữ • < p < ∞ cho độ o tng quỏt ã p = bit σ -hữu hạn Cách xác định sai trường hợp khác Support hàm Lp Ta biết rằng, cho hàm f : Rn R, support f tập hợp spt(f ) := Bao đóng{x ∈ Rn : f (x) ̸= 0} = {x ∈ Ω : f (x) ̸= 0} (S) Định nghĩa khơng cịn phù hợp cho hàm f ∈ Lp (Rn ) Thật vậy, ta muốn khái niệm thỏa mãn tính chất sau f1 = f2 hầu khắp nơi Rn ⇒ spt(f1 ) = spt(f2 ), trừ số phần khơng đáng kể Nhưng trường hợp khơng Thật Ví dụ: Cho f1 := χQ : R → R f2 ≡ Khi đó, rõ ràng f1 = f2 hầu khắp nơi R spt(f1 ) = Q = R spt(f2 ) = ∅ Mệnh đề (Support thiết yếu cùa hàm) Cho f : Rn → R Ký hiệu Af := {ω ⊂ Rn : ω tập mở f = hầu khắp nơi ω} cho Af := ∪ω∈Af ω 52 Khi Af tập mở f = hầu khắp nơi Af Tập đóng spte (f ) := Rn \ Af (ES) gọi support cần thiết f Rn Nhận xét 11 (i) Từ định nghĩa (ES), suy ra, f1 = f2 hầu khắp nơi Rn , spte (f1 ) = spte (f2 ) (ii) Định nghĩa (S) (ES) giống hàm liên tục Chính xác Bài tập Nếu f : Rn → R liên tục, Rn \ Af = {x ∈ Rn : f (x) ̸= 0} Chứng minh mệnh đề ?? Hiển nhiên Af tập mở Ta chứng minh f (x) = hầu khắp nơi x ∈ Af (29) Từ Rn không gian metric tách được, thỏa mãn tiên đề thứ hai tính đếm (Định lý 20) Do tồn họ đếm tập mở U = {Ui : i ∈ N} thỏa mãn với tập mở Rn hợp phần tử đếm U Với ω ∈ Af , giả sử ω = ∪i∈Jω Ui cho số phù hợp Jω ⊂ N cho J := ∪ω∈Af Jω Do Af = ∪i∈J Ui Từ f = hầu khắp nơi Ui với i ∈ J , theo (??) 14 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) 53 Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề 10 Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề 49 ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy R∼ = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) 54 Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề 48 Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý 26 Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần  tử khác không  khả nghịch Lấy bất 0 − a     0 0    kỳ a ∈ R, a = ̸ 0, ta có X =      ∈ Mn (R) X =    0 Do M n (R) ∆U -vành,ta lấy X ∈ ∆(Mn (R)) Lấy phần  tử 0 1 0 0  0        0  U =  ∈ Mn (R) Khi In −U X =           0 0 0 khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể khả nghịch  0 0   0     a

Ngày đăng: 03/07/2023, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w