Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 103 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
103
Dung lượng
579,21 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: TÍNH DAO ĐỘNG, KHƠNG DAO ĐỘNG VÀ TÍNH ỔN ĐỊNH CHO PHƯƠNG TRÌNH VI PHÂN TRUNG HỊA ĐỐI SỐ LỆCH LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Tác giả học tập vận dụng cơng cụ Giải tích hàm phi tuyến để khảo sát sư tồn nhât nghiêm toán biên phi tuyến, chẳng hạn như: phương pháp Galerkin liên hệ vời kỹ thuật đánh giá tiên nghiệm, kỹ thuật tính compacl hội tụ yếu Trong phần nầy, chúng tơi có dịp sử dụng dược định lý Schauder việc chứng minh tồn nghiệm xấp xỉ Galerkin Tác giả cụ thể vấn đề vào ví dụ trình bày chương 4, để minh hoạ phương pháp tìm nghiệm toán 43 2 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép toán lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều khơng gian vector vơ hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai khơng gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E khơng gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup Định lý (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng không gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E không gian Hilbert Không gian hàm liên tục C0 (Ω) Định nghĩa (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) không gian Banach vô hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (1) Từ (??), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (2) Từ (??), lấy qua giới hạn (??), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vơ hạn A có điểm giới hạn thuộc A Nhận xét Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng qt Định lý (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập khơng gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hồn tồn; (iv) A có tính chất BW Nhận xét Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét Định lý ?? cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) khơng thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 26 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý ?? ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F N |CN (y)| S∈G/N y∈S Áp dụng Bổ đề từ suy X X X X |CH/N (S)| |CN (y)| |H||G| Pr(H, G) ⩽ |CH/N (yN )||CN (y)| = S∈G/N y∈S = X S∈G/N |CH/N (S)| S∈G/N X X |CS (x)| = x∈N |CH/N (S)| S∈G/N y∈S X |S ∩ CG (x)| x∈N Nếu S ∩ CG (x) ̸= ∅ tồn x0 ∈ S ∩ CG (x) S = N x0 Khi ta có S ∩ CG (x) = N x0 ∩ CG (x)x0 = (N ∩ CG (x))x0 = CN (x)x0 Từ suy |S ∩ CG (x)| = |CN (x)x0 | = |CN (x)| Nếu S ∩ CG (x) = ∅ rõ ràng = |S ∩ CG (x)| < |CN (x)| Do trường hợp ta có |S ∩ CG (x)| ⩽ |CN (x)| Từ suy X X X X |H||G| Pr(H, G) ⩽ |CH/N (S)| |S ∩ CG (x)| ⩽ |CH/N (S)| |CN (x)| S∈G/N x∈N S∈G/N = |H/N ||G/N | Pr(H/N, G/N )|N | Pr(N ) = |H||G| Pr(H/N, G/N ) Pr(N ) Do Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) x∈N 75 Cuối cùng, giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Khi đó, theo Bổ đề ta có CH (y)N = CH/N (yN ) với y ∈ G N Theo lập luận ta có |H||G| Pr(H, G) = X |CH/N (S)| X |S ∩ CG (x)| x∈N S∈G/N Vì N ◁ G [N, G] ⩽ N Do từ giả thiết suy [N, G] = N ∩ [N, G] ⩽ N ∩ [H, G] = 1, hay N ⩽ Z(G) Từ suy CG (x) ∩ S = G ∩ S ̸= ∅ với x ∈ N với S ∈ G/N Do |S ∩ CG (x)| = |CN (x)| với x ∈ N Từ suy xảy dấu đẳng thức Trong trường hợp đặc biệt, tích trực tiếp ta có kết sau Mệnh đề 43 Cho N H hai nhóm, N1 H1 tương ứng nhóm N H Khi Pr(N1 × H1 , N × H) = Pr(N1 , N ) Pr(H1 , H) Chứng minh Giả sử x = (x1 , x2 ) ∈ N1 × H1 Khi CN ×H (x) = {(a1 , a2 ) ∈ N × H | (x1 , x2 )(a1 , a2 ) = (a1 , a2 )(x1 , x2 )} = {(a1 , a2 ) ∈ N × H | (x1 a1 , x2 a2 ) = (a1 x1 , a2 x2 )} Do |CN ×H (x)| = |CN (x1 )||CH (x2 )| Từ suy X x∈N1 ×H1 |CN ×H (x)| = X x1 ∈N1 |CN (x1 )| X x2 ∈H1 |CH (x2 )| 76 Áp dụng Mệnh đề ?? ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| X |CN ×H (x)| x∈N1 ×H1 = X X |CN (x1 )| |CH (x2 )| |N1 ||H1 ||N ||H| = |N1 ||N | x1 ∈N1 X |CN (x1 )| x1 ∈N1 x2 ∈H1 X |CH (x2 )| |H1 ||H| x2 ∈H1 = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ 21 Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) Đối với tích nửa trực tiếp vấn đề tính độ giao hốn tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta công thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 44 Cho A nhóm giao hốn, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần tử sinh Ký hiệu G = A×θ C2 tích nửa trực tiếp A nhóm xiclíc C2 = ⟨u⟩ với tác động θ : C2 → Aut(A) cho cơng thức θ(u) = α Khi Pr(A, G) = |Aα | + 2|A| Aα = {a ∈ A | α(a) = a} Chứng minh Giả sử x = (x1 , 1) ∈ A Khi ta có CG (x) = CA (x) ∪ CG\A (x) 77 Vì A nhóm giao hốn nên CA (x) = A Ta có CG\A (x) = {(a, u) ∈ G \ A | (x1 , 1)(a, u) = (a, u)(x1 , 1)} = {(a, u) ∈ G \ A | (x1 a, u) = (aθ(u)(x1 ), u)} = {(a, u) ∈ G \ A | (ax1 , u) = (aα(x1 ), u)} Ta xét hai trường hợp x1 sau Trường hợp 1: x1 ∈ Aα Khi aα(x1 ) = ax1 với a ∈ A Do |CG\A | = |A| Trường hợp 2: x1 ∈ A \ Aα Khi aα(x1 ) ̸= ax1 với a ∈ A Do CG\A = ∅, |CG\A | = Từ suy X X X X |CG (x)| = x∈A (|CA (x)| + |CG\A (x)|) = x∈A |CA (x)| + x∈A = |A|2 + X |CG\A (x)| + x∈Aα X |CG\A (x)| x∈A |CG\A (x)| x∈A\Aα = |A|2 + |A||Aα | + = |A|(|A| + |Aα |) Theo Mệnh đề ?? ta có X |CG (x)| Pr(A, G) = |A||G| x∈A = |A| |C2 | |A|(|A| + |Aα |) = |A| + |Aα | |Aα | = + 2|A| 2|A| Vậy ta có điều phải chứng minh 26 Mở rộng Dorroh mở rộng ∆U -vành Mệnh đề 45 Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm 78 Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Mỗi x ∈ ∆(R), ta có − x ∈ U (R), x = − (1 − x) ∈ U◦ (R) Suy ∆(R) ⊆ U◦ (R) Ngược lại, y ∈ U◦ (R) − y ∈ U (R) = + ∆(R) Suy y ∈ ∆(R) hay ∆(R) = U◦ (R) (2) ⇒ (3) Hiển nhiên (3) ⇒ (1) Giả sử ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Khi u ∈ U (R), tồn x ∈ ∆(R) thỏa mãn u = ε(x) = − x Điều nghĩa U (R) ⊆ + ∆(R) hay U (R) = + ∆(R) Nếu R vành, mở rộng Dorroh vành có đơn vị Z ⊕ R, với phép tốn cộng cộng theo thành phần phép nhân cho (n1 , r1 )(n2 , r2 ) = (n1 n2 , r1 r2 + n1 r2 + n2 r1 ) Chú ý Cho R vành có đơn vị Khi (1) u ∈ U (R) − u ∈ U◦ (R) (2) (1, u − 1) ∈ U (Z ⊕ R) với u ∈ U (R) (3) (1, −x)(1, −y) = (1, −x◦y) (−1, x)(−1, y) = (1, −x◦y) với x, y ∈ R Định lý 38 Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành; (2) R ∆U -vành Chứng minh (1) ⇒ (2) Lấy u ∈ U (R) Khi − u ∈ U◦ (R) Tồn v ∈ R thỏa mãn (1 − u) ◦ v = = v ◦ (1 − u) Khi ta có (1, u−1)(1, −v) = (1, −(1−u))(1, −v) = (1, −(1−u)◦v) = (1, 0) = (1, −v)(1, u−1) Điều nghĩa (1, u − 1) ∈ U (Z ⊕ R) Vì Z ⊕ R ∆U -vành, (1, u − 1) ∈ + ∆(Z ⊕ R) (0, u − 1) ∈ ∆(Z ⊕ R) Tiếp theo, ta U (R) = + ∆(R) Thật vậy, t ∈ U (R), ta có + t ∈ U◦ (R), (1 + t) ◦ s = = s ◦ (1 + t) với s ∈ R Khi (−1, + t)(−1, s) = (1, −(1 + t) ◦ s) = (1, 0) = (−1, s)(−1, + t) 79 Do (−1, + t) ∈ U (Z ⊕ R) Theo định nghĩa ∆, ta có (0, u − 1) + (−1, + t) ∈ U (Z ⊕ R) (−1, u + t) ∈ U (Z ⊕ R) Đặt x = u + t Khi đó, (−1, x) ∈ U (Z ⊕ R) (1, −x) ∈ U (Z ⊕ R) Suy tồn (1, −y) ∈ Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Ta có x ◦ y = = y ◦ x nên x ∈ U◦ (R) Vì − x ∈ U (R) nên x − = u + t − ∈ U (R) Suy u + t − = (u − 1) + t ∈ U (R) với t ∈ U (R) Điều nghĩa u − ∈ ∆(R), u ∈ + ∆(R) (2) ⇒ (1) Giả sử R ∆U -vành Ta mở rộng Dorroh Z ⊕ R ∆U -vành, nghĩa U (Z ⊕ R) = + ∆(Z ⊕ R) Lấy ω ∈ U (Z ⊕ R) Khi đó, ω có dạng ω = (1, a) ω = (−1, b) với a, b ∈ R Trường hợp ω = (1, a) ∈ U (Z ⊕ R): Lấy x = −a, tồn (1, −y) Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Điều có nghĩa x◦y = = y ◦x x ∈ U◦ (R), 1+a = 1−x ∈ U (R) Từ R ∆U -vành, 1+a ∈ 1+∆(R) Vì a ∈ ∆(R) a+U (R) ⊆ U (R) Tiếp theo ta chứng minh (1, a) ∈ + ∆(Z ⊕ R), nghĩa ta chứng minh (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Với α ∈ U (Z ⊕ R), α có dạng (1, u) (−1, v) với u, v ∈ R Nếu α = (1, u), từ chứng minh ω ta có + u ∈ U (R) Từ a + U (R) ⊆ U (R), ta lấy a + + u ∈ U (R), −(a + u) ∈ U◦ (R) Lấy b ∈ R với (−(a + u)) ◦ b = = b ◦ (−(a + u)) Đặt c = −(a + u) Khi c ◦ b = b ◦ c (1, a + u)(1, −b) = (1, −c)(1, −b) = (1, −b ◦ c) = (1, 0) = (1, −b)(1, a + u) Ta suy (1, a + u) ∈ U (Z ⊕ R) Hơn nữa, ta có (0, a) + α = (1, a + u) ∈ U (Z ⊕ R), nghĩa (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Nếu α = (−1, v) ∈ U (Z⊕R), (−1, v)(−1, d) = (1, 0) = (−1, d)(−1, v) với d ∈ R Ta suy v◦d = = d◦v = v ∈ U◦ (R), 1−v ∈ U (R) Khi đó, v − ∈ U (R) Từ a + U (R) ⊆ U (R), ta có a + v − ∈ U (R) − (a + v) ∈ U (R) Do đó, a + v ∈ U◦ (R) Nghĩa tồn e ∈ R thỏa mãn (a + v) ◦ e = = e ◦ (a + v), (−1, a + v)(−1, e) = (1, −(a + v) ◦ e) = = 80 (−1, e)(−1, a+v) Điều có nghĩa (−1, a+v) ∈ U (Z ⊕R) Hơn nữa, ta có (0, a) + α = (−1, a + v) ∈ U (Z ⊕ R) Do đó, (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Trường hợp ω = (−1, a) ∈ U (Z ⊕ R): Tương tự Trường hợp Cho C vành vành D, tập hợp R[D, C] := {(d1 , , dn , c, c ) : di ∈ D, c ∈ C, n ≥ 1}, với phép cộng phép nhân định nghĩa theo thành phần gọi vành mở rộng đuôi ký hiệu R[D, C] Mệnh đề 46 R[D, C] ∆U -vành D C ∆U -vành Chứng minh (:⇒) Đầu tiên ta chứng minh D ∆U -vành Lấy u tùy ý thuộc U (D) Khi u¯ = (u, 1, 1, 1, ) ∈ U (R[D, C]) Theo giả thuyết, u¯ ∈ + ∆(R[D, C]), (u − 1, 0, 0, 0, ) + U (R[D, C]) ⊆ U (R[D, C]) Do đó, với v ∈ U (D), (u − + v, 1, 1, 1, ) = (u − 1, 0, 0, 0, ) + (v, 1, 1, 1, ) ∈ U (R[D, C]) Vì u − + v ∈ U (D), nghĩa u − ∈ ∆(D) u ∈ + ∆(D) Để C ∆U -vành, ta lấy v ∈ U (C) thỏa mãn v¯ = (1, , 1, v, v, ) ∈ U (R[D, C]) chứng minh (⇐:) Giả sử D C ∆U -vành Lấy u¯ = (u1 , u2 , , un , v, v, ) ∈ U (R[D, C]), ui ∈ U (D) với ≤ i ≤ n v ∈ U (C) ⊆ U (D) Ta u¯ ∈ ∆(R[D, C]) u¯ − + U (R[D, C]) ⊆ U (R[D, C]) Thật vậy, tất a¯ ∈ (a1 , a2 , , am , b, b, ) ∈ U (R[D, C]) ∈ U (D), ≤ i ≤ m b ∈ U (C) ⊆ U (D) Lấy k = max{m, n} Khi đó, ta có u1 , u2 , , un ∈ U (D), v ∈ U (C) ⊆ U (D) ta suy u1 − + U (D), u2 − + U (D), , un − + U (D) ⊆ U (D), v − + U (D) ⊆ U (D) v − + U (C) ⊆ U (C) Ta có u¯ − = (u1 − 1, u2 − 1, , un − 1, un+1 − 1, , uk − 1, v − 1, v − 1, ), với uj = v j ≥ k , a ¯ = (a1 , a2 , , am , am+1 , , ak , b, b, ), 81 với al = b với l ≥ m Khi ta có u¯ − + a ¯ = (u1 − + a1 , u2 − + a2 , , uk − + ak , v − + b, v − + b, ) Lưu ý ui − + ∈ U (D) với ≤ i ≤ k v − + b ∈ U (C) Ta suy u¯ − + a ¯ ∈ R[U (D), U (C)] = U (R[C, D]) Vì u¯ − ∈ ∆(R[D, C]) u¯ ∈ + ∆(R[D, C]), hay R[D, C] ∆U -vành 27 Không gian hàm liên tục C0 (Ω) Định nghĩa 17 (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý 39 Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) khơng gian Banach vơ hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (15) Từ (??), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (16) 82 Từ (??), lấy qua giới hạn (??), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa 18 Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vơ hạn A có điểm giới hạn thuộc A Nhận xét Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng quát Định lý 40 (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập khơng gian metric (X, d), ta có điều sau tương đương: 83 (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hồn tồn; (iv) A có tính chất BW Nhận xét 10 Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ 22 Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý 41 (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét 11 Định lý ?? cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) khơng thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa 19 Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý 42 (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ 23 Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau 84 Hệ 24 Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý 43 Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 26 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý ?? ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor 85 Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (17) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (18) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x−y| < δ ⇒ |f (x)−f (y)| < ϵ, ∀f ∈ F (19) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N K⊂ n [ B(xi , σ) i=1 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1