1. Trang chủ
  2. » Khoa Học Tự Nhiên

TỔNG HỢP ĐỀ THI THẠC SĨ ĐẠI HỌC CẦN THƠ ( 2010–2014 ) MÔN LL & PPDH BỘ MÔN TOÁN

8 1,6K 20

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 171,5 KB

Nội dung

TỔNG HỢP ĐỀ THI THẠC SĨ ĐẠI HỌC CẦN THƠ (2010–2014) MÔN LL & PPDH BỘ MÔN TOÁN

Trang 1

TRƯỜNG ĐẠI HỌC CẦN THƠ

KHOA SƯ PHẠM

BỘ MÔN SƯ PHẠM TOÁN HỌC

TỔNG HỢP

ĐỀ THI TUYỂN SINH THẠC SĨ

ĐẠI HỌC CẦN THƠ

Giai đoạn 2010 – 2014 Môn Lí luận và Phương pháp Dạy học Bộ môn Toán

Biên soạn LATEX

Mai Mẫn Tiệp

Email

maimantiep@gmail.com

Homepage

maimantiep.wordpress.com

Lưu hành nội bộ

Cần Thơ, 2014

Trang 2

ĐẠI HỌC CẦN THƠ (2010–2014)

MÔN LL & PPDH BỘ MÔN TOÁN

LATEX by Mai Mẫn Tiệp∗ Ngày 14 tháng 5 năm 2014

Lưu ý

a) Thời gian làm bài của mỗi đề là 180 phút.

b) Thí sinh không được sử dụng bất kì tài liệu nào (kể cả Sách giáo

khoa) để làm bài

c) Các kiến thức toán học trong đề chỉ được xét trong chương trình Toán (phân ban) hiện hành

d) Mọi ý kiến về các sai sót mắc phải, cũng như những đề thi khác của Đại học Cần Thơ mà tác giả chưa cập nhật, xin liên hệ email

maimantiep@gmail.com.

e) Các bạn hoàn toàn được quyền sử dụng file nguồn LATEX của ebook này, nhưng phải ghi rõ đội ngũ thực hiện

Tài liệu

[1] Nguyễn Phú Lộc (2010), Dạy học hiệu quả môn Giải tích trong trường phổ thông, NXB Giáo dục, Hà Nội.

[2] Bùi Phương Uyên (2011), Phân tích chương trình toán phổ thông,

ĐH Cần Thơ, Cần Thơ

Trang 3

1 Phương pháp, năm 2010, đợt 1

Câu 1

a) Theo R Marzano, khi dạy học kiến thức thông báo giáo viên cần thực hiện theo các bước nào? Áp dụng vào dạy học khái niệm hai vectơ bằng nhau trong chương trình Hình học 10

b) Cho bài toán:

“Trong mặt phẳng Ox y, cho 4 điểm A(2; 2), B(4; 4), C(1; a2) và

D(−1; a) Tìm a sao cho tứ giác ABCD là một hình bình hành” Một học sinh giải như sau:

“ABCD là hình bình hành⇔−−→AB=−−→DC

⇔a2−a=2⇔a= −1 hoặc a=2 Đáp số: a= −1, a=2.”

Hãy phân tích lỗi trên của học sinh

Câu 2 Hãy nêu cách hướng dẫn học sinh tìm cách giải bài toán sau

đây:

“Giải phương trình: |3−2x| =x” (Đại số 10)

Câu 3

a) Trình bày một mô hình dạy học có thể dùng để dạy học khám phá định lí, và cho biết nếu dạy học theo mô hình đó thì giáo viên có thể phát triển những năng lực tư duy nào cho học sinh b) Hãy tổ chức quá trình dạy học định lí về điều kiện đủ để hàm số

có cực trị (không chứng minh định lí) bằng dạy học khám phá

Câu 4 Cho bài toán:

“Trong tập số thực, tìm tham số m sao cho hệ phương trình sau đây có nghiệm:

(p

x−1+py−2=1

x+y=m ”

a) Giải bài toán trên

b) Tổng quát hóa bài toán trên và nêu ra thuật giải

—————HẾT—————

Trang 4

Câu 1

a) Theo Marzano, khi dạy học kiến thức qui trình giáo viên cần thực hiện theo các bước nào? Áp dụng vào dạy học giải phương trình sau đây trên tập số thực:

f (x).g(x)= f (x).h(x)

b) Phân tích sai lầm sau đây của học sinh:

“(x−3)px2 −16=0⇔

· x−3=0

p

x−16=0 (2)⇔

·

x=3

x= ±4 ”

Câu 2

a) Hãy nêu các ý nghĩa khác nhau của khái niệm hàm số

b) Hãy sử dụng sơ đồ để biểu thị mối liên hệ giữa các khái niệm

“giá trị của hàm số”, “giới hạn của hàm số”, và “hàm số liên tục”

Câu 3 Hãy nêu cách hướng dẫn học sinh tìm tòi lời giải bài toán sau

đây:

“Giải phương trình: p

8+x=4−px ”

Câu 4 Vận dụng quan điểm hàm số giải bài toán sau đây:

“Giải hệ phương trình

(x6+1)x+

µ1 3

¶ y

−y=

µ1 3

¶ x

+y7 3x+4 y=7

Trang 5

3 Phương pháp, năm 2011, đợt 2, đề số 03

Câu 1 (3.0 điểm):

a) Khi hình thành khái niệm toán học cho học sinh, trong khâu nào giáo viên có thể yêu cầu học sinh thực hiện hành động phân tích?

b) Hãy nêu cách hướng dẫn học sinh phân tích định nghĩa sau đây

về một đường thẳng vuông góc với một mặt phẳng: “Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.” (HÌNH HỌC 11

- Nâng cao)

Câu 2 (3.0 điểm):

Trong dạy học định lí toán học, nếu bắt đầu quá trình dạy học bằng phát biểu định lí thì giáo viên làm thế nào để tích cực hóa hoạt động học tập của học sinh Áp dụng vào dạy học định lí cosin trong tam giác

Câu 3 (2.5 điểm):

Nêu cách hướng dẫn học sinh giải bài toán sau đây:

“Giải bất phương trình: p x

x+1−1<3 ”

Câu 4 (1,5 điểm):

Cho bài toán:

“Trong tập số thực, chứng minh rằng phương trình (ẩn x):

4x

x2 +1= (a+p1)(a−1)−a+4

a(a−1)+2

vô nghiệm với mọi a ”

Hãy giải và khái quát hóa bài toán trên theo quan điểm hàm số

—————HẾT—————

Trang 6

Câu 1 Nếu dạy học một định lí toán học có khâu nêu giả thuyết thì

quá trình dạy học cần được tổ chức như thế nào? Áp dụng vào dạy học định lí sau đây:

“Nếu a, b và c là ba số hạng liên tiếp của một cấp số cộng thì

b= a+c

2 ”

Câu 2

a) Trong quá trình dạy học khái niệm toán học, trong những khâu nào giáo viên có thể yêu cầu học sinh thực hiện hành động so sánh?

b) Hãy nêu cách hướng dẫn học sinh so sánh khái niệm vectơ chỉ phương và vectơ pháp tuyến của đường thẳng

Câu 3 Hãy nêu cách hướng dẫn học sinh tìm tòi lời giải bài toán sau

đây:

“Giải phương trình:

p

x3 −4+2x(1−x)−x+2

p

x2(x−1)−(x−1)2 −3+p2x2 +2(2−3x)=1 ”

Câu 4 Xét bài toán:

“Chứng minh rằng:

a2+a+ 1

a2 +a+1≥1 với mọi a (1)”

Một học sinh đã giải như sau:

“Giả sử a2+a+ 1

a2 +a+1 ≤1 (2)

(2)⇔a2+a+1+ 1

a2 +a+1≤2

⇔(a2+a)2≤0 vô lí

Vậy (1) đúng với mọi a.” Hãy nêu nhận xét về lời giải trên

Trang 7

5 Phương pháp, năm 2013, đợt 1, đề số 03

Câu 1

a) Trình bày một mô hình dạy học có thể dùng cho dạy học khám phá định lí, và cho biết nếu dạy học theo mô hình đó thì giáo viên có thể phát triển những năng lực tư duy nào cho học sinh b) Hãy dạy học định lí sau đây:

“Cho cấp số cộng (un) Đặt Sn=u1+u2+ .+un

Khi đó

Sn= n(u1+un)

2 ” (Đại số và Giải tích 11) bằng dạy học khám phá

Câu 2

a) Khi dạy học khái niệm toán học cho học sinh theo con đường diễn dịch thì giáo viên làm thế nào để tích cực hóa hoạt động nhận thức của học sinh

b) Áp dụng vào dạy học khái niệm vectơ pháp tuyến của đường thẳng với định nghĩa như sau: “Vectơ ~n được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu~n6=~0 và~n vuông góc với vectơ chỉ phương của ∆.” (Hình Học 10)

Câu 3 Hãy nêu cách hướng dẫn học sinh tìm tòi lời giải bài toán sau

đây:

“Trong tập số thực, giải bất phương trình: 8

x

+2x−11+2p5

x−1

5

p

x−1−1 ≥

1”

Câu 4 Cho bài toán: “Chứng minh rằng đẳng thức sau đúng với mọi

số thực α

3

2 = 1

2

¡

sin4α +cos4α¢ +sin6α +cos6α +sin22α

a) Hãy giải bài toán trên theo quan điểm hàm số

b) Hãy khái quát hóa bài toán trên theo quan điểm hàm số (trình bày cả thuật giải)

c) Anh (Chị) hãy đề xuất hai bài toán cùng dạng với bài toán trên (kèm theo lời giải chi tiết)

—————HẾT—————

Trang 8

Câu 1

a) Theo Marzano, dạy học khái niệm toán học giáo viên cần thực hiện theo các bước nào?

b) Áp dụng vào dạy học khái niệm vectơ pháp tuyến của đường thẳng với định nghĩa như sau: “Vectơ ~n được gọi là vectơ pháp tuyến của đường thẳngnếu~n6=~0 ~n vuông góc với vectơ chỉ phương của.” (Hình Học 10).

Câu 2 Trong dạy học định lí, khái quát hóa có thể sử dụng ở những

khâu (trường hợp) nào Hãy sử dụng định lí Cosin trong tam giác làm

ví dụ minh họa

Câu 3 Khái niệm hàm số được định nghĩa như sau: “Nếu với mỗi giá trị của x thuộc tập D có một và chỉ một giá trị tương ứng của y thuộc tập số thực R thì ta có một hàm số.” (Đại số 10).

a) Hãy chỉ ra các ý nghĩa khác nhau của khái niệm hàm số

b) Hãy so sánh phương trình đường thẳng có dạng: y = ax+b và phương trình đường thẳng có dạng: Ax+B y+C = 0 (trong đó

A2+B26=0)

Câu 4 Một học sinh giải bài toán

“Giải phương trình: x2−1=(x−1)(2x−3) (1)” như sau:

“(1)⇒x+1=2x−3

⇒x=4

Đáp số x=4.”

Hãy phân tích lỗi của học sinh trong lời giải trên

—————HẾT—————

Ngày đăng: 20/05/2014, 20:32

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w