Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 173 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
173
Dung lượng
4,84 MB
Nội dung
i LỜI CAM ĐOAN Tôi xin cam đoan luận án cơng trình nghiên cứu tơi hướng dẫn cán hướng dẫn Những số liệu kết trình bày luận án trung thực chưa công bố cơng trình khác Tác giả Trần Hồi Anh ii LỜI CẢM ƠN Trước hết, xin bày tỏ lời cảm ơn sâu sắc đến thầy hướng dẫn khoa học PGS.TS Nguyễn Hoàng Giang PGS.TS Lê Trung Thành ln tận tình hướng dẫn giúp đỡ suốt q trình thực luận án Tơi xin gửi lời cảm ơn chân thành đến thầy giáo kỹ thuật viên Bộ mơn Thí nghiệm Kiểm định cơng trình, Trường Đại học Xây dựng Hà Nội, giúp đỡ tơi q trình thực công việc thực nghiệm Tôi chân thành cảm ơn thầy cô Khoa Xây dựng DD&CN, Phòng Quản lý đào tạo, nhà khoa học Trường Đại học Xây dựng Hà Nội trường Đại học kỹ thuật lĩnh vực xây dựng đưa nhiều góp ý giúp tơi hồn thiện nội dung luận án Tôi chân thành cảm ơn Cục Giám định nhà nước chất lượng công trình, Cục Cơng tác phía Nam, Bộ Xây dựng, tạo điều kiện thuận lợi để tơi hồn thành nhiệm vụ nghiên cứu Cuối cùng, xin bày tỏ lời cảm ơn sâu sắc đến bố mẹ, vợ bạn bè, đồng nghiệp ủng hộ tinh thần động viên tơi vượt qua khó khăn học tập, nghiên cứu đề hoàn thành luận án Trần Hoài Anh iii MỤC LỤC LỜI CAM ĐOAN .i LỜI CẢM ƠN ii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT .vii DANH MỤC BẢNG BIỂU ix DANH MỤC HÌNH VẼ xi MỞ ĐẦU 1 Lý chọn đề tài Mục đích nghiên cứu 3 Đối tượng phạm vi nghiên cứu Cơ sở khoa học Phương pháp nghiên cứu Ý nghĩa khoa học thực tiễn luận án Những đóng góp luận án Nội dung cấu trúc luận án CHƯƠNG – NGHIÊN CỨU TỔNG QUAN VỀ KẾT CẤU DẦM BÊ TÔNG CỐT THÉP BỊ ĂN MỊN TRONG MƠI TRƯỜNG BIỂN 1.1 Tổng quan ăn mịn cốt thép kết cấu cơng trình 1.1.1 Cơ chế ăn mòn cốt thép 1.1.2 Các giai đoạn q trình ăn mịn cốt thép 10 1.1.3 Những nguyên nhân gây ăn mịn cốt thép 11 1.2 Tổng quan ứng xử uốn kết cấu dầm BTCT bị ăn mòn 18 1.2.1 Trên giới 18 1.2.2 Ở Việt Nam 22 1.3 Tổng quan sửa chữa gia cường kết cấu BTCT bị ăn mòn 29 1.3.1 Các phương pháp sửa chữa gia cường kết cấu BTCT bị ăn mòn 29 1.3.2 Cấu tạo vật liệu FRP 33 iv 1.3.3 Các đặc điểm vật liệu FRP 35 1.3.4 Tình hình nghiên cứu gia cường kết cấu BTCT sợi FRP 39 1.4 Kết luận Chương 50 CHƯƠNG – NGHIÊN CỨU THỰC NGHIỆM ỨNG XỬ UỐN CỦA KẾT CẤU DẦM BÊ TÔNG CỐT THÉP BỊ ĂN MÒN 52 2.1 Thiết lập mơ hình thí nghiệm gia tốc ăn mòn cốt thép 52 2.1.1 Mục đích thí nghiệm 52 2.1.2 Nguyên lý thí nghiệm 52 2.1.3 Mơ hình thí nghiệm 53 2.1.4 Quy trình thí nghiệm 54 2.2 Thí nghiệm gia tốc ăn mịn cốt thép mẫu thử 55 2.2.1 Vật liệu sử dụng 56 2.2.2 Mẫu thử 58 2.2.3 Áp dụng mơ hình thí nghiệm gia tốc ăn mòn cốt thép 59 2.2.4 Kết thực nghiệm mẫu thử 60 2.2.5 Xác định hệ số hiệu chỉnh định luật Faraday mẫu thử BTCT 64 2.3 Thí nghiệm gia tốc ăn mòn cốt thép mẫu dầm BTCT 66 2.3.1 Vật liệu sử dụng 66 2.3.2 Mẫu dầm thí nghiệm 67 2.3.3 Áp dụng mơ hình thí nghiệm gia tốc ăn mòn cốt thép 68 2.3.4 Xác định mức độ ăn mòn cốt thép 69 2.4 Thực nghiệm ứng xử uốn kết cấu dầm BTCT bị ăn mịn 72 2.4.1 Mục đích thí nghiệm 72 2.4.2 Sơ đồ thí nghiệm 72 2.4.3 Quan hệ tải trọng độ võng 73 v 3.2.4 Phân tích ảnh hưởng ăn mịn cốt thép dọc đến ứng xử uốn dầm BTCT 77 2.5 Sơ đồ vết nứt bê tông dầm BTCT 80 2.5.1 Sơ đồ vết nứt bê tông ăn mòn 80 2.5.2 Sơ đồ vết nứt bê tông tải trọng 85 2.6 Kết luận Chương 90 CHƯƠNG – NGHIÊN CỨU THỰC NGHIỆM GIA CƯỜNG CHỊU UỐN KẾT CẤU DẦM BÊ TÔNG CỐT THÉP BỊ ĂN MÒN BẰNG TẤM CFRP 92 3.1 Thực nghiệm gia cường chịu uốn dầm BTCT bị ăn mòn 92 3.1.1 Vật liệu sử dụng 92 3.1.2 Mẫu dầm gia cường 95 3.1.3 Quy trình gia cường chịu uốn dầm ăn mòn sợi CFRP 98 3.2 Thực nghiệm ứng xử uốn dầm ăn mòn gia cường 102 3.2.1 Mục đích thí nghiệm 102 3.2.2 Sơ đồ thí nghiệm 103 3.2.3 Quan hệ tải trọng độ võng 104 3.3 Phân tích kết thực nghiệm 107 3.3.1 Khả chịu lực dầm ăn mòn gia cường 107 3.3.2 Độ võng dầm 108 3.3.3 Dạng phá hoại dầm ăn mòn gia cường 110 3.4 Kết luận Chương 111 CHƯƠNG – MƠ HÌNH PHI TUYẾN PHÂN TÍCH ỨNG XỬ UỐN CỦA KẾT CẤU DẦM BÊ TƠNG CỐT THÉP BỊ ĂN MỊN GIA CƯỜNG BẰNG TẤM CFRP 113 4.1 Mở đầu 113 4.2 Tóm tắt chương trình thực nghiệm 115 4.2.1 Vật liệu dầm thí nghiệm 115 vi 4.2.2 Kết thực nghiệm 116 4.3 Mơ hình phần tử hữu hạn phi tuyến 118 4.3.1 Định nghĩa phần tử 118 4.3.2 Mơ hình vật liệu 120 4.3.3 Kiểm chứng mơ hình PTHH 126 4.4 Nghiên cứu tham số 134 4.4.1 Cường độ nén bê tơng, hàm lượng cốt thép cường độ bám dính 134 4.4.2 Sơ đồ dán gia cường 137 4.5 Kết luận Chương 140 KẾT LUẬN 142 KẾT LUẬN 142 KIẾN NGHỊ 143 TÀI LIỆU THAM KHẢO 145 Tài liệu tiếng Việt 145 Tài liệu nước 146 vii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT AFRP : Aramid Fiber Reinforced Polymer BTCT : Bê tông cốt thép CFRP : Carbon Fiber Reinforced Polymer FRP : Fiber Reinforced Polymer GFRP : Glass Fiber Reinforced Polymer PTHH : Phần tử hữu hạn A : Ampe (đơn vị cường độ dòng điện) cv (%) : Hệ số biến động clt (%) : Mức độ ăn mòn lý thuyết cốt thép ctt (%) : Mức độ ăn mòn thực tế cốt thép c (%) : Mức độ ăn mịn trung bình cốt thép ci (%) : Mức độ ăn mòn thép F : Hằng số Faraday I : Cường độ dòng điện Itb : Cường độ dịng điện trung bình L (mm) : Chiều dài thực tế cốt thép bị ăn mòn/Chiều dài truyền sóng siêu âm M : Nguyên tử khối sắt ∆m (g) : Khối lượng kim loại bị mát ăn mòn mo (g) : Khối lượng kim loại trước ăn mòn m (g) : Khối lượng kim loại lại sau ăn mòn m : Giá trị trung bình Pb (kN) : Lực kéo tới hạn làm đứt thép Pc (kN) : Lực kéo thời điểm thép chảy dẻo PEXP : Tải trọng thu từ thí nghiệm PFEM : Tải trọng thu từ mơ hình Pn (kN) : Tải trọng gây nứt viii Pph (kN) : Tải trọng phá hoại Rb (MPa) : Giới hạn bền thép Rc (MPa) : Giới hạn chảy thép Rn (MPa) : Cường độ chịu nén bê tông s : Độ lệch chuẩn T (giờ) : Thời gian ăn mịn điện hóa/Thời gian truyền sóng siêu âm U (vơn) : Hiệu điện dòng điện ix DANH MỤC BẢNG BIỂU Bảng 1.1 Yêu cầu thiết kế bảo vệ kết cấu chống ăn mòn môi trường biển [23] 27 Bảng 1.2 Một số tính chất lý vật liệu CFRP 34 Bảng 1.3 Một số tính chất lý vật liệu GFRP 35 Bảng 1.4 Một số tính chất lý vật liệu epoxy 35 Bảng 2.1 Thành phần cấp phối vật liệu loại bê tông sử dụng 56 Bảng 2.2 Cường độ chịu nén bê tông sử dụng 28 ngày tuổi 57 Bảng 2.3 Mức độ ăn mòn cốt thép mẫu thử bê tông B30 61 Bảng 2.4 Mức độ ăn mòn cốt thép mẫu thử bê tông B40 62 Bảng 2.5 Mức độ ăn mòn cốt thép mẫu thử bê tông B50 64 Bảng 2.6 So sánh mức độ ăn mòn cốt thép thực tế dự báo 65 Bảng 2.7 Cường độ chịu nén bê tông B30 28 ngày tuổi 66 Bảng 2.8 Các tính chất học cốt thép dọc 67 Bảng 2.9 Mức độ ăn mòn cốt thép tổ mẫu II 71 Bảng 2.10 Mức độ ăn mòn cốt thép tổ mẫu III 71 Bảng 2.11 Mức độ ăn mòn cốt thép tổ mẫu IV 71 Bảng 2.12 Tổng hợp kết thí nghiệm uốn bốn điểm 78 Bảng 3.1 Các tính chất học sợi CFRP 94 Bảng 3.2 Khối lượng keo dán sử dụng 94 Bảng 3.3 Mức độ ăn mòn cốt thép tổ mẫu V 97 Bảng 3.4 Mức độ ăn mòn cốt thép tổ mẫu VI 97 Bảng 3.5 Mức độ ăn mòn cốt thép tổ mẫu VII 98 Bảng 3.6 So sánh tải trọng uốn phá hoại dầm thí nghiệm 107 Bảng 3.7 So sánh độ võng dầm thí nghiệm 109 Bảng 4.1 Tổng hợp kết thí nghiệm uốn dầm 117 Bảng 4.2 Các tham số vật liệu sử dụng mơ hình PTHH 123 x Bảng 4.3 So sánh kết thí nghiệm mơ hình 128 Bảng 4.4 Ảnh hưởng cường độ bê tông, hàm lượng cốt thép dọc suy giảm cường độ bám dính 136 Bảng 4.5 Ảnh hưởng sơ đồ dán gia cường chiều dài CFRP 140 144 DANH SÁCH CÁC BÀI BÁO CÔNG BỐ KẾT QUẢ NGHIÊN CỨU CỦA ĐỀ TÀI LUẬN ÁN [1] Tran Hoai Anh, Nguyen Thanh Quang, Nguyen Ngoc Tan, Nguyen Hoang Giang, Tran Anh Dung (2018), “An experimental study to identify the influence of steel corrosion on concrete – steel bond”, Proceedings of 7th International Conference on Protection of Structures against Hazards, Hanoi, Vietnam, 511518 ISBN: 978-981-11-7777-4 [2] Trần Hoài Anh, Nguyễn Ngọc Tân, Nguyễn Hoàng Giang (2019), “Nghiên cứu thực nghiệm khả chịu lực dầm bê tơng cốt thép bị ăn mịn mơi trường xâm thực clorua”, Tạp chí Xây dựng Việt Nam, 09 2019, 81-86 ISSN: 2734-9888 [3] Trần Hoài Anh, Nguyễn Ngọc Tân, Nguyễn Hoàng Giang (2019), “Một số đặc điểm vết nứt dầm bê tông cốt thép bị ăn mịn mơi trường xâm thực clorua”, Tạp chí Xây dựng Việt Nam, 10 2019, 101-107 ISSN: 2734-9888 [4] Trần Hoài Anh, Nguyễn Ngọc Tân, Nguyễn Hoàng Giang (2021), “Nghiên cứu thực nghiệm hiệu gia cường kháng uốn dầm bê tông cốt thép bị ăn mịn sợi composite CFRP”, Tạp chí Khoa học Công nghệ Xây dựng, 15 (1V), 1-16 ISSN: 1859-2996 https://doi.org/10.31814/stce.nuce2021-15(1V)-01 [5] Tran Hoai Anh, Nguyen Ngoc Tan, Nguyen Trung Kien, Nguyen Hoang Giang (2021), “Finite element analysis of the flexural behavior of corroded RC beams strengthened by CFRP sheets”, International Journal of GEOMATE, 21 (88), 4247 ISSN: 2186-2982 https://doi.org/10.21660/2021.88.gxi255 [6] Nguyen Trung Kien, Tran Hoai Anh, Nguyen Ngoc Tan, Nguyen Hoang Giang, Phuong Tran (2022), “Nonlinear finite element analysis of corroded RC beams strengthened by CFRP sheets”, Composite Structures (under review) ISSN: 0263-8223 145 TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt [1] Bộ Xây dựng (2016), Tài liệu đào tạo, bồi dưỡng thí nghiệm ăn mịn bê tơng bê tơng cốt thép, Chương trình đào tạo thuộc Đề án 1511 [2] Cao Duy Tiến, Phạm Văn Khoan, Lê Quang Hùng ctv (2003), Báo cáo tổng kết dự án KT – KT chống ăn mòn bảo vệ cơng trình bê tơng BTCT vùng biển, Viện KHCN Xây dựng [3] Đặng Vũ Hiệp (2018), “Mô ứng xử dầm bê tông cốt thép bị ăn mịn”, Tạp chí Xây dựng Việt Nam, số tháng 4/2018 [4] Nguyễn Chí Thanh (2017), Nghiên cứu gia cường kết cấu bê tông cốt thép composite - ứng dụng cho cơng trình thủy lợi, Luận án tiến sĩ kỹ thuật, Viện Khoa học Thủy lợi [5] Nguyễn Đăng Nguyên, Dương Văn Hai (2019), “Dự đoán đường cong lực chuyển vị dầm đơn giản bê tông cốt thép nhịp chịu uốn bốn điểm có cốt thép bị ăn mịn”, Tạp chí Khoa học Cơng nghệ Xây dựng - ĐHXD, 13 (4V), 82–93 [6] Nguyễn Đăng Nguyên, Nguyễn Ngọc Tân (2019), “Dự báo khả chịu lực lại cột BTCT chịu nén lệch tâm phẳng có cốt thép dọc bị ăn mịn”, Tạp chí Khoa học Công nghệ Xây dựng – ĐHXD, 13(2V), 53–62 [7] Nguyễn Hùng Phong, Phạm Quang Đạo (2013), “Nghiên cứu thực nghiệm gia cường chống động đất cho cột BTCT sợi liên tục FRP”, Tạp chí Khoa học Công nghệ Xây dựng, 17, 38-46 [8] Nguyễn Hùng Phong (2014), “Nghiên cứu thực nghiệm gia cường kháng cắt cho dầm BTCT sợi thủy tinh”, Tạp chí Khoa học Công nghệ Xây dựng, số 3/2014, 23 – 29 [9] Nguyễn Mạnh Hùng (2017), Nghiên cứu hiệu gia cường sàn BTCT làm việc hai phương chịu uốn vật liệu compozit, Luận văn thạc sỹ, Trường Đại học Xây dựng [10] Nguyễn Nam Thắng (2007), Nghiên cứu ứng dụng canxi nitrit làm phụ gia ức chế ăn mịn cốt thép cho bê tơng cốt thép điều kiện Việt Nam, Luận án tiến sĩ kỹ thuật, Viện KHCN Xây dựng, Hà Nội [11] Ngô Quang Tường (2007), “Sửa chữa gia cố cơng trình bê tơng cốt thép phương pháp dán nhờ sử dụng vật liệu FRP”, Tạp chí phát triển KH&CN, số 146 10/2007, 39-51 [12] Nguyễn Trung Hiếu (2015), “Nghiên cứu hiệu gia cường kháng uốn cho dầm bê tông cốt thép vật liệu sợi bon”, Tạp chí Khoa học Công nghệ Xây dựng, số 1/2015, 3-9 [13] Nguyễn Trung Hiếu, Lý Trần Cường (2018), “Nghiên cứu thực nghiệm hiệu gia cường dầm bê tông cốt thép chịu xoắn vật liệu sợi bon CFRP”, Tạp chí Khoa học Công nghệ Việt Nam, 60 (3), 29-35 [14] Nguyễn Trung Hiếu, Lý Trần Cường (2019), “Nghiên cứu thực nghiệm hiệu gia cường kháng uốn dầm bê tông cốt thép bị nứt vật liệu sợi composite CFRP”, Tạp chí Khoa học Cơng nghệ Việt Nam, 61 (3), 33-35 [15] Nguyễn Trung Hiếu cs (2019), Nghiên cứu xây dựng Hướng dẫn thiết kế thi công gia cường kết cấu BTCT vật liệu sợi composite, Báo cáo tổng kết đề tài KH&CN cấp Bộ Xây dựng [16] Nguyễn Trung Kiên (2016), Nghiên cứu hiệu gia cường dầm BTCT bị nứt vật liệu composite FRP, Luận văn thạc sỹ, Trường Đại học Xây dựng [17] TCVN 197-1:2014, Vật liệu kim loại – Phương pháp thử kéo [18] TCVN 1651-2:2008, Thép cốt bê tông - Phần 2: Thép vằn [19] TCVN 3118:1993, Bê tông nặng - Phương pháp xác định định cường độ nén [20] TCVN 3994:1985, Chống ăn mòn xây dựng - Kết cấu bê tông bê tông cốt thép - Phân loại môi trường xâm thực [21] TCVN 9139:2012, Cơng trình thủy lợi - kết cấu bê tông, bê tông cốt thép vùng ven biển - Yêu cầu kỹ thuật [22] TCVN 9343:2012, Kết cấu bê tông bê tông cốt thép - Hướng dẫn công tác bảo trì [23] TCVN 9346:2012, Kết cấu bê tơng bê tông cốt thép - Yêu cầu bảo vệ chống ăn mịn mơi trường biển [24] TCVN 9348:2012, Bê tông cốt thép - Kiểm tra khả cốt thép bị ăn mòn Phương pháp điện [25] Vũ Quốc Hưng (2020), “Nghiên cứu nguyên nhân hư hỏng cấu kiện bê tơng cốt thép cơng trình cảng tác dụng môi trường biển biện pháp xử lý”, Tạp chí Khoa học Cơng nghệ Xây dựng, 14 (2V), 107-121 Tài liệu nước [26] ACI 318-19 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute 147 [27] ACI 440.2R-17 (2017), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute [28] AFGC (2004), Conception des bétons pour une durée de vie donnée des ouvrages Mtrise de la durabilité vis-à-vis de la corrosion des armatures et de l’alcaliréaction État de l’art et guide pour la mise en œuvre d’une approche performantielle et prédictive sur la base d’indicateurs de durabilité, Documents scientifiques et techniques, AFGC, 252 p [29] AFGC (2003), Rehabilitation of reinforced concrete damaged by corrosion, 70 p [30] Ahmed O., van Gemert D (1999), “Effect of longitudinal carbon fiber reinforced plastic laminates on shear capacity of reinforced concrete beams”, In: Dolan C.W., Rizkalla S.H., Nanni A (eds), Proceedings of the Fourth International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, Maryland, USA, 933–943 [31] Ali A., Abdalla J., Hawileh R., Galal K (2014), “CFRP mechanical anchorage for externally strengthened RC beams under flexure”, Physics Procedia, 55, 10–16 [32] Al-Mahaidi R., Hii A.K.Y (2007), “Bond behaviour of CFRP reinforcement for torsional strengthening of solid and box-section RC beams”, Composites Part B: Engineering, 38 (5–6), 720-731 [33] Al-Sulaimani G.J., Kaleemullah M., Basunbul I.A., Rasheeduzzafar R (1990), “Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members”, ACI Structural Journal, 87 (2), 220–231 [34] Alonso C., Andrade C., Castellote M., Castro P (2000), “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar”, Cement and Concrete Research, 30 (7), 1047-1055 [35] Alonso C., Castellote M., Andrade C (2000), “Dependence of chloride threshold with the electrical potential of reinforcements”, In: Andrade C and Kropp J (eds) Proceedings of the 2nd International Rilem Workshop Testing and Modelling Chloride Ingress into Concrete, RILEM, 415-428 [36] ASTM G1-03(2017)e1, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA [37] Auyeung Y., Balaguru P., Chung L (2000), “Bond behavior of corroded reinforcement bars”, ACI Materials Journal, 97 (2), 214–220 [38] Azad A.K., Ahmad S., Azher S.A (2007), “Residual strength of corrosion-damaged reinforced concrete beams”, ACI Materials Journal, 104 (1), 40–47 [39] Azam R., Soudki K., West J.S., Noël M (2017), “Strengthening of shear-critical RC beams: Alternatives to externally bonded CFRP sheets”, Construction and Building Materials, 151, 494-503 148 [40] Bahn B.Y., Harichandran R.S (2008), “Flexural behavior of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar”, Journal of Composites for Construction, 12 (4), 387-395 [41] Ballim Y., Reid J.C (2003), “Reinforcement corrosion and the deflection of RC beams - an experimental critique of current test methods”, Cement and Concrete Composites, 25 (6), 625–632 [42] Bazant Z.P., Oh B.H (1983), “Crack band theory for fracture of concrete”, Matériaux et Construction, 16, 155–177 [43] Bier T.A., Kropp J., Hilsdorf H.K (1987), “Carbonation and realcalinisation of concrete and hydrated cement paste”, Durability of Construction Materials, Maso J.C (eds), London-New York, Chapman and Hall, 927-934 [44] Bhargava K., Ghosh A.K., Mori Y., Ramanujam S (2007), “Corrosion-induced bond strength degradation in reinforced concrete - Analytical and empirical models”, Nuclear Engineering and Design, 237 (11), 1140–1157 [45] Bonacci J.F., Maalej M (2000), “Externally bonded FRP for rehabilitation of corrosion damaged concrete beams”, ACI Structural Journal, 97 (5), 703–711 [46] Broomfield J.P (2000), The Use of Permanent Corrosion Monitoring in New and Existing Reinforced Concrete Structures, www.aguide.net/scripts/technology/ profile/index.cfm?l=19&h=195.html [47] Buyukozturk O., Hearing B (1998), “Failure behavior of precracked concrete beams retrofitted with FRP”, ASCE Journal of Composites for Construction, (3), 138–144 [48] Cape M (1999), Residual service-life assessment of existing R/C structures, Master thesis, Chalmers Univ of Technology (Goteborg, Sweden) and Milan Univ of Technology (Italy, Erasmus Program) [49] Castel A., Franỗois R., Arliguie G (2000), Mechanical behaviour of corroded reinforced concrete beams - Part 1: Experimental study of corroded beams”, Materials and Structures, 33, 539–544 [50] CEB-FIP (1993), Model Code 1990 – Design code, Thomas Telford House, London [51] Cowie J., Glasser F.P (1992), “The reaction between cement and natural waters containing dissolved carbon dioxide”, Advances in Cement Research, (15), 119-134 [52] Coronelli D., Gambarova P (2004), “Structural assessment of corroded reinforced concrete beams: modeling guidelines”, Journal of Structural Engineering, 130 (8), 1214–1224 [53] Cusson D., Isgor B (2004), Durability of concrete structures: prevention, evaluation, inspection, repair and prediction, National Research Council Canada, NRCC-46624, Canada [54] Daly A.F (1999), Modelling of deterioration in bridges, Technical report, Transport 149 Research Laboratory, European Commission under Transport [55] Dang V.H., Francois R (2013), “Influence of long-term corrosion in chloride environment on mechanical behavior of RC beam”, Engineering Structures, 48, 558568 [56] De Ceukelaire L., Van Nieuwenburg D (1993), “Accelerated carbonation of a blastfurnace cement concrete”, Cement and Concrete Research, 23, 442-452 [57] Deng Z.C., Li J.H., Lin H.F (2009), “Experimental study on flexural performance of corroded RC beams strengthened with AFRP sheets”, Key Engineering Materials, 405-406, 343–349 [58] Dong J., Zhao Y., Wang K., Jin W Crack propagation and flexural behaviour of RC beams under simultaneous sustained loading and steel corrosion Construction and Building Materials, 2017, 151, 208–219 [59] Dong J., Wang Q., Guan Z (2013), “Structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets”, Composites Part B: Engineering, 44 (1), 604–612 [60] Dong W., Ye J., Murakami Y., Oshita H., Suzuki S., Tsutsumi T (2016), “Residual load capacity of corroded reinforced concrete beam undergoing bond failure”, Engineering Structures, 127, 159–171 [61] Du Y.G., Clark L.A., Chan A.H.C (2005), “Effect of corrosion on ductility of reinforcing bars”, Magazine of Concrete Research, 57 (7), 407–419 [62] Du Y., Clark L.A., Chan A.H.C (2007), “Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams”, ACI Structural Journal, 104 (3), 285-293 [63] Du Y., Cullen M., Li C (2013), “Structural performance of RC beams under simultaneous loading and reinforcement corrosion”, Construction and Building Materials, 38, 472–481 [64] Dunster A.M (1989), “An investigation of the carbonation of cement paste using trimethylsilylation”, Advances in Cement Research, (7), 99-106 [65] Duval R (1992), La durabilité des armatures et du béton d’enrobage, In: La durabilité des bétons, Presses des Ponts et Chaussées [66] El-Ghandour AA (2011), “Experimental and analytical investigation of CFRP flexural and shear strengthening efficiencies of RC beams”, Construction and Building Materials, 25 (3), 1419–1429 [67] EN 206-1 (2000), Norme européenne – Béton, Partie 1: Spécifications, performances, production et conformité et dispositions nationales, AFNOR [68] Ferreira J., Manie D (2020), DIANA Documentation release 10.4, DIANA FEA bv, Netherlands [69] fib 14 (2001), Externally Bonded FRP Reinforcement for RC structures, Technical 150 Report, Bulletin 14, International Federation for Structural Concrete [70] Franỗois R., Dubosc A., Yssorche M.P (1998), Incidences sur le dimensionnement des ouvrages en béton armé des nouvelles avancées en matière de durabilité”, Annales du Bâtiment et des Travaux Publics, No 6/1998, 5-12 [71] Franỗois R., Khan I., Dang V.H (2013), “Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams”, Material and Structures, 46, 899-910 [72] Gao P., Gu X., Mosallam A.S (2016), “Flexural behavior of preloaded reinforced concrete beams strengthened by prestressed CFRP laminates”, Composite Structures, 157, 33–50 [73] Qapo M., Dirar S., Jemaa Y (2016), “Finite element parametric study of reinforced concrete beams shear-strengthened with embedded FRP bars”, Composite Structures, 149, 93–105 [74] Garden H.N., Hollaway L.C (1998), “An experimental study of the influence of plate end anchorage of carbon fibre composite plates used to strengthen reinforced concrete beams”, Composite Structures, 42, 175–188 [75] Genin J.M.R., Abdelmoula M., Refait P., Simon L (1998), “Comparison of the Green Rust Two lamellar double hydroxide class with the Green Rust One pyroaurite class: Fe(II)–Fe(III) sulphate and selenate hydroxides”, Hyperfine Interactions, 3, 313-316 [76] Genin J.M.R., Olowe A.A., Refait P., Simon L (1996), “On the stoichiometry and Pourbaix diagram of Fe(II)–Fe(III) hydroxy-sulphate or sulphate containing green rust 2; an electrochemical and Mössbauer spectroscopy study”, Corrosion Science, 38, 1751-1762 [77] Genin J.M.R., Refait P., Bourrie G., Abdelmoula M., Trolard F (2001), “Structure and stability of the Fe(II)–Fe(III) green rust ‘fougerite’ mineral and its potential for reducing pollutants in soil solutions”, Applied Geochemistry, 16 (5), 559-570 [78] Godat A., Chaallal O., Obaidat Y (2020), “Non-linear finite-element investigation of the parameters affecting externally-bonded FRP flexural-strengthened RC beams”, Results in Engineering, 8, 100168 [79] Hai D.T., Yamada H., Katsuchi H (2007), “Present condition of highway bridges in Vietnam: an analysis of current failure modes and their main causes”, Structure and Infrastructure Engineering, (1), 61-73 [80] Hawileh R.A., Musto H.A., Abdalla J.A., Naser M.Z (2019), “Finite element modeling of reinforced concrete beams externally strengthened in flexure with sidebonded FRP laminates”, Composites Part B: Engineering, 173, 106952 [81] Hanjari K.Z., Kettil P., Lundgren K (2011), “Analysis of the mechanical behaviour of corroded reinforced concrete structures”, ACI Structural Journal, 108 (5), 532-541 151 [82] Hansson C.M., Frolund T., Markussen J.B (1985), “The effect of chloride cation type on the corrosion of steel in concrete by chloride salts”, Cement and Concrete Research, 15 (1), 65-73 [83] Hausmann D.A (1967), “Steel corrosion in concrete: how does it occur?”, Materials protection, (11), 19-23 [84] Hariche L., Ballim Y., Bouhicha M., Kenai S (2012), “Effects of reinforcement configuration and sustained load on the behaviour of reinforced concrete beams affected by reinforcing steel corrosion”, Cement and Concrete Composites, 34 (10), 1202–1209 [85] Higgins C., Farrow W.C (2006), “Tests of reinforced concrete beams with corrosiondamaged stirrups”, ACI Structural Journal, 103 (1), 133–141 [86] Homam S.M., Sheikh S.A (2002), Durability of Fibre Reinforced Polymers Used in Concrete Structures, National Research Council of Canada [87] Hordijk D., Reinhardt H (1993), “Numerical and experimental investigation into the fatigue behavior of plain concrete”, Experimental Mechanics, 33, 278–285 [88] Imam A., Azad A.K (2016), “Prediction of residual shear strength of corroded reinforced concrete beams”, International Journal of Advanced Structural Engineering, 8, 307–318 [89] ISIS (2008), FRP Rehabilitation of Reinforced Concrete Structures, Design Manual No 4, Version 2, The Canadian Network of Centres of Excellence on Intelligent Sensing for Innovative Structures (ISIS Network) [90] Jansze W (1997), Strengthening of RC Members in Bending by Externally Bonded Steel Plates, PhD Thesis, Delft University of Technology, Delft [91] JSCE CES41 (2001), Recommendations for Upgrading of Concrete Structures with Use of Continuous Fiber Sheet, Concrete Engineering Series 41, Japan Society of Civil Engineering [92] Juarez C.A., Guevara B., Fajardo G., Castro-Borges P (2011), “Ultimate and nominal shear strength in reinforced concrete beams deteriorated by corrosion”, Engineering Structures, 33 (12), 3189–3196 [93] J.G Rots (1991), “Smeared and discrete representations of localized fracture”, International Journal of Fracture, 51, 45-59 [94] Kashani M.M., Crewe A.J., Alexander N.A (2013), “Nonlinear stress–strain behaviour of corrosiondamaged reinforcing bars including inelastic buckling”, Engineering Structures, 48, 417–429 [95] Kien N.T., Tan N.N (2020), “Modeling the flexural behavior of corroded reinforced concrete beams with considering stirrups corrosion”, Journal of Science and Technology in Civil Engineering, 14 (3), 26-39 152 [96] Laferrière F (2005), Surveillance des ouvrages de génie civil par capteurs fibres optiques: capteurs d’ions chlore, École polytechnique fédérale de Lausanne, 159 p [97] Lawrence C.B (2006) Composite for construction: structural design and FRP materials, Published by John Wiley & Sons, Inc, Hoboken, New Jersey [98] Lee H.S., Kage T., Noguchi T., Tomosawa F (1999), The evaluation of flexural strength of RC beams damaged by rebar corrosion, In: Lacasse M.A and Vanier D.J (eds) Durability of Building Materials And Components 8, Institute for Research in Construction, Ottawa ON, K1A 0R6, Canada, 321-330 [99] Legrand L., Abdelmoula M., Génin A., Chaussé A., Génin J.M.R (2001), “Electrochemical formation of a new Fe(II)3–Fe(III) hydroxy-carbonate green rust: characterisation and morphology”, Electrochimica Acta, 46 (12), 1815-1822 [100] Li C.Q., Melchers R.E (2005), “Time-dependent risk assessment of structural deterioration caused by reinforcement corrosion”, ACI Structural Journal, 102, 754762 [101] Liu Y., Weyers R.E (1998), “Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures”, ACI Materials Journal, 96 (6), 675–681 [102] Lu X.Z., Teng J.G., Ye L.P., Jiang J.J (2005), “Bond-slip models for FRP sheets/plates bonded to concrete”, Engineering Structures, 27 (6), 920-937 [103] Maaddawy T.E., Soudki K., Topper T (2005), “Long-term performance of corrosiondamaged reinforced concrete beams”, ACI Structural Journal, 102 (5), 649656 [104] Maaddawy T.E., Soudki K., Topper T (2007), “Performance evaluation of carbon fiber-reinforced polymer-repaired beams under corrosive environmental conditions”, ACI Structural Journal, 104 (1), 3–11 [105] Malumbela G., Moyo P., Alexander M (2009), “Behaviour of RC beams corroded under sustained service loads”, Construction and Building Materials, 23 (11), 3346– 3351 [106] M Alijani-Ardeshir, B.N Neya, M Ahmadi (2019), “Comparative study of various smeared crack models for concrete dams”, Gradevinar, 71, 305–318 [107] Mangat P.S., Elgarf M.S (1999), “Flexural strength of concrete beams with corroding reinforcement”, ACI Structural Journal, 96 (1), 149–158 [108] Masuda M.Y (2002), Condition survey of salt damage to reinforced concrete buildings in Japan, Concrete for extreme conditions, Proceedings of the International Conference held at the University of Dundee Scotland, England, Thomas Telford Publications, 823 - 836 [109] fib (2013), Model Code for Concrete Structures 2010, Ernst & Sohn, Berlin, Germany [110] Molina F.J., Alonso C., Andrade C (1993), “Cover cracking as a function of rebar 153 corrosion: Part - Numerical model”, Materials and Structures, 26 (9), 532–548 [111] Midgley H.G., Illston J.M (1984), “The penetration of chlorides into hardened cement pastes”, Cement and Concrete Research, 14 (4), 546-558 [112] Miragliotta R., Rougeau P., Aït-Mokhtar A., Amiri O (1999), Béton de peau et carbonatation, Actes du 2e Congrès universitaire de Génie Civil, 151-158 [113] Misubishi Chemical Infratec (2020), Revitalizing concrete structures – REPLARK carbon fiber sheet for construction industries, infratec.co.jp/english/pdf/products/e07a_1201201_en.pdf http://www.mp- [114] Nakamura H., Higai T (2001), “Compressive fracture energy and fracture zone length of concrete”, Modelling of inelastic behaviour of RC structures under seismic loads, 471-487 [115] Ngala V.T., Page C.L (1997), “Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes”, Cement and Concrete Research, 27 (7), 9951007 [116] Nguyen D.M., Chan T.K., Cheong H.K (2001), “Brittle failure and bond development length of CFRP-concrete beams”, ASCE Journal of Composites for Construction, (1), 12–17 [117] Nguyen N.T., Nguyen T.K., Nguyen H.G (2021), “Numerical study on the flexural performance of RC beams with externally bonded CFRP sheets”, Journal of Science and Technology in Civil Engineering, 15 (4), 182–196 [118] Nishizaki I., Labossiere P., Sarsaniuc, B (2004), SP-230-80: Durability of CFRP Sheet Reinforcement through Exposure Tests, In: Fiber-reinforced (FRP) polymer reinforcement for concrete structures, 239, 1419-1428, ACI Special Publications [119] N M Hung, T T Duong (2016), “Experimental study on flexural strengthening of one-way reinforced concrete slabs using carbon and glass fiber reinforced polymer sheets”, The 7th International Conference of Asia Concrete Federation, Hanoi, Vietnam [120] N.N Tan, N.D Nguyen (2019), “An experimental study on flexural behavior of corroded reinforced concrete beams using electrochemical accelerated corrosion method”, Journal of Science and Technology in Civil Engineering, 13 (1), 1-11 [121] N.N Tan, N.T Kien (2020), “Numerical modeling of shear behavior of reinforced concrete beams with stirrups corrosion: finite element validation and parametric study”, Proceedings of the International Conference on Modern Mechanics and Application, Ho Chi Minh city, Vietnam [122] Oehlers D.J (1992), “Reinforced concrete beams with plates glued to their soffits”, ASCE Journal of Structural Engineering, 118 (8), 2023–2038 [123] Ollivier J.P., Vichot A (2008), La durabilité des bétons: bases scientifiques pour la 154 formulation de bétons durables dans leur environnement, Presses des Ponts, 844 p [124] Ou Y-C., Nguyen N.D (2016), “Influences of location of reinforcement corrosion on seismic performance of corroded reinforced concrete beams”, Engineering Structures, 126, 210–223 [125] Pihlajavaara S.E (1968), “Some results of the effect of carbonation on the porosity and pore size distribution of cement past”, Materials and Structures, (6), 521-526 [126] Pourbaix H (1966), Atlas of electrochemical equilibria in aqueous solutions, Oxford [127] Quantrill R.J., Hollaway L.C., Thorne A.M (1996), “Experimental and analytical investigation of FRP strengthened beam response: Part I”, Magazine of Concrete Research, 48 (177), 331–342 [128] Raharinaivo A., Arliguie G., Chaussadent T., Grimaldi G., Pollet V., Taché G (1998), La corrosion et la protection des aciers dans le béton, Presses des Ponts et Chaussées, 168 p [129] Raoof M., Zhang S (1997), “An insight into the structural behaviour of reinforced concrete beams with externally bonded plates”, Proceedings of the Institution of Civil Engineers: Structures and Buildings, 122, 477–92 [130] Raoof M., Hassanen M.A.H (2000), “Peeling failure of reinforced concrete beams with fibre-reinforced plastic or steel plates glued to their soffits”, Proceedings of the Institution of Civil Engineers: Structures and Buildings, 140, 291–305 [131] Refait P., Génin J.M.R (1993), “The oxidation of Fe(II) hydroxide in chloride containing aqueous media and Pourbaix diagrams of green rust I”, Corrosion Science, 34, 797-819 [132] Regourd M., Hornain H., Mortureux B (1980), “Microstructure of concrete in aggressive environments Durability of building materials and components”, Proc 1st Int Conf., Ottawa, P.J Sereda and G.G Litvan eds., ASTM, STP 691, Philadelphia, PA, 253-268 [133] Ritchie P.A., Thomas D.A., Lu L.W., Connely G.M (1991), “External reinforcement of concrete beams using fiber reinforced plastics”, ACI Structural Journal, 88 (4), 490–500 [134] Roberts T.M (1989), “Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams”, The Structural Engineer, 67 (12), 229–233 [135] Rodriguez J., Ortega L.M., Casal J (1997), “Load carrying capacity of concrete structures with corroded reinforcement”, Construction and Building Materials, 11 (4), 239–248 [136] Roy S.K., Poh K.B., Northwood D.O (1999), “Durability of concrete Accelerated carbonation and weathering studies”, Building and Environment, 34, 597-606 [137] Saadatmanesh H., Ehsani M.R (1991), “RC Beams strengthened with GFRP plates I: 155 Experimental study”, Journal of Structural Engineering, 117 (11), 3417–3433 [138] Saadatmanesh H., Malek A.M (1998), “Design guidelines for flexural strengthening of RC beams with FRP plates”, ASCE Journal of Composites for Construction, (4), 158–164 [139] Saetta A.V., Schrefler B.A., Vitaliani R.V (1995), “2-D Model for carbonation and moisture/heat flow in porous materials”, Cement and Concrete Research, 25 (8), 17031712 [140] Sagoe-Crentsil K.K., Glasser F.P (1990), Analysis of the steel: concrete interface, In: Page C.L., Treadaway K.W.J., Bamforth P.B (eds) Corrosion of Reinforcement in Concrete, Elsevier Science Publishers Ltd, London, 74-86 [141] Salama A.S.D., Hawileh R., Abdalla J.A (2019), “Performance of externally strengthened RC beams with side-bonded CFRP sheets”, Composite Structures, 212, 281–290 [142] Saleem M.U., Khurram N., Amin M.N., Khan K (2019), “Finite element simulation of RC beams under flexure strengthened with different layouts of externally bonded fiber reinforced polymer (FRP) sheets”, Journal of Construction, 17 (3), 383-400 [143] Salomon M., Galias J.-L (1991), “Durabilité des voiles minces en béton armé Cas des réfrigérants atmosphériques”, Annales de ITBTP, No 496 [144] Schiessl P (1976), “Zur Frage der zulässigen Rissbreite und der erforderlichen Betondeckung im Stahlbetonbau unter besonderer Berücksichtigung der Karbonatisierung des Betons”, Deutscher Ausschuss für Stahlbetonbau, 255, 39-49 [145] Sharif A., Al-Sulaimani G.J., Basunbul I.A., Baluch M.H., Ghaleb B.N (1994), “Strengthening of initially loaded reinforced concrete beams using FRP plates”, ACI Structural Journal, 91 (2), 160–168 [146] Shayanfar M.A., Ghalehnovi M., Safiey A (2007), “Corrosion effects on tension stiffening behavior of reinforced concrete”, Computers and Concrete, (5), 403–424 [147] Shrestha R (2009), Behaviour of RC beam-column connections retrofitted with FRP strips, PhD Thesis, University of Technology Sydney, Australia [148] Smith S.T., Teng J.G (2002), “FRP-strengthened RC beams I: review of debonding strength models”, Engineering Structures, 24 (4), 385-395 [149] Smith S.T., Teng J.G (2002), “FRP-strengthened RC beams II: assessment of debonding strength models”, Engineering Structures, 24 (4), 397-417 [150] Soltani M., Safiey A., Brennan A (2019), “A state-of-the-art review of bending and shear behaviors of corrosion-damaged reinforced concrete beams”, ACI Structural Journal, 116 (3), 53-64 [151] Soudki K.A., Sherwood T., Masoud S (2000), FRP repair of corrosion-damaged reinforced concrete beams, Department of Civil Engineering, University of Waterloo, 156 Waterloo, Canada [152] Soudki K.A., Rteil A.A., Al-Hammoud R., Topper T.H (2007), “Fatigue strength of fibre-reinforced-polymer-repaired beams subjected to mild corrosion”, Canadian Journal of Civil Engineering, 34 (3), 414–421 [153] Tavio, Teng S (2004), “Effective torsional rigidity of reinforced concrete members”, ACI Structural Journal, 101 (2), 252-260 [154] Teng J.G., Chen J.F., Smith S.T., Lam L (2002), FRP: strengthened RC structures, John Wiley & Sons [155] Teng J.G., Smith S.T., Yao J., Chen J.F (2003), “Intermediate crack-induced debonding in RC beams and slabs”, Construction and Building Materials, 17 (6–7), 447-462 [156] Thiery M., Villain G., Platret G (2003), Effect of carbonation on density, microstructure and liquid water saturation of concrete, In: Lange, D.A., Scrivener, K.L., Marchand J (eds) Advances in Cement and Concrete, 481-490 [157] Thiery M (2006), Modélisation de la carbonatation atmosphérique des matériaux cimentaires, Études et Recherches des LPC, OA 52 [158] Torres-Acosta A.A., Navarro-Gutierrez S., Terán-Guillén J (2007), “Residual flexure capacity of corroded reinforced concrete beams”, Engineering Structures, 29 (6), 1145–1152 [159] TR55 (2000), Design guidance for strengthening concrete structures using fibre composite materials, Concrete Society Technical Report 55, The Concrete Society, Crowthorne, UK [160] Tran H.A., Nguyen N.T., Nguyen T.K., Nguyen H.G (2021), “Finite element analysis of the flexural behavior of corroded RC beams strengthened by CFRP sheets”, International Journal of GEOMATE, 21 (88), 42-47 [161] Tsukayama R., Abe H., Nagataki S (1980), “Long-term experiments on the neutralization of concrete mixed with fly ash and the corrosion of reinforcement”, 7e Congrès international de la Chimie des Ciments, Paris, 30-35 [162] Tumialan G., Serra P., Nanni A., Belarbi A (1999), “Concrete cover delamination in reinforced concrete beams strengthened with carbon fiber reinforced polymer sheets”, In: Dolan C.W., Rizkalla S.H., Nanni A (eds) Proceedings of the Fourth International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, Maryland, USA, 725-735 [163] Tumialan G., Belarbi A., Nanni A (1999), Reinforced concrete beams strengthened with CFRP composites: failure due to concrete cover delamination, Department of Civil Engineering, Center for Infrastructure Engineering Studies, Report No CIES99/01, University of Missouri-Rolla, USA 157 [164] Tuutti K (1982), Corrosion of steel in concrete, Swedish Cement and Concrete Research Institute, Stockholm [165] Ullah R., Yokota H., Hashimoto K., Goto S (2016), “Load carrying capacity of RC beams with locally corroded shear reinforcement”, Journal of Asian Concrete Federation, (1), 46-55 [166] Usdowski E (1982), “Reactions and equilibria in the systems CO2-H2O and CaCO3CO2-H2O”, Journal of Mineralogy and Geochemistry, 144 (2), 148-171 [167] Van Balen K., Van Gemert D (1994), “Modelling lime mortar carbonation”, Materials and Structures, 27, 393-398 [168] Varastehpour H., Hamelin P (1997), “Strengthening of concrete beams using fiberreinforced plastics”, Materials and Structures, 30, 160–166 [169] Venuat M., Alexandre J (1968, 1969), “De la carbonatation du béton”, Revue des Matériaux de Construction, 638-639: 421-427 & 469-481, 640: 5-15 [170] Wang C.Y., Ling F.S (1998), “Prediction model for the debonding failure of cracked RC beams with externally bonded FRP sheets”, In: Proceedings of the Second International Conference of Composites in Infrastructure (ICCI), Arizona, USA, 548– 562 [171] Wierig H (1984), “Longtime studies on the carbonation of concrete under normal outdoor exposure”, Proceedings of RILEM Seminar, Hannover, 239-249 [172] Wu H.-C., Eamon C.D (2017), Strengthening of concrete structures using fiber reinforced polymers (FRP) - Design, construction and practical applications, Woodhead Publishing [173] Yang D., Park K., Neale W (2009), “Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites”, Composite Structures, 88 (4), 497– 508 [174] Yoon S., Wang K., Weiss W.J., Shah S.P (2000), “Interaction between loading, corrosion, and serviceability of reinforced concrete”, ACI Materials Journal, 97 (6), 637–644 [175] Zhang Z., Hsu T (2005), “Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates”, Journal of Composites for Construction, (2), 158–169 [176] Zhu W., Franỗois R., Coronelli D., Cleland D (2013), Effect of corrosion of reinforcement on the mechanical behaviour of highly corroded RC beams”, Engineering Structures, 56, 544–554 [177] Zhu W., Franỗois R (2014), Corrosion of the reinforcement and its inuence on the residual structural performance of a 26-year-old corroded RC beam”, Construction and Building Materials, 51, 461–472 158 [178] Zhu W., Franỗois R., Cleland D., Coronelli D (2015), Failure mode transitions of corroded deep beams exposed to marine environment for long period”, Engineering Structures, 96, 66–77 [179] Zhu W., Franỗois R., Fang Q., Zhang D (2016), Inuence of long-term chloride diffusion in concrete and the resulting corrosion of reinforcement on the serviceability of RC beams”, Cement and Concrete Composites, 71, 144–152 [180] Ziraba Y.N., Baluch M.H., Basunbul I.A., Sharif A.M., Azad A.K., Al-Sulaimani G.J (1994), “Guidelines towards the design of reinforced concrete beams with external plates”, ACI Structural Journal, 91 (6), 639–646