Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y = log5x tại điểm có hoành độ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m ≤ C m < D m > Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = C m = −15 D m = 13 Câu 4.√ Cho √hai số thực a, bthỏa mãn√ a > b > Kết luận sau sai? √ √ √ B a < b C ea > eb D a− < b− A a > b Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 6; 0) Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh nó√bằng A πRl B 2π l2 − R2 C 2πRl D π l2 − R2 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = tan x D y = sin x Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(6; −17; 21) A C(6; 21; 21) B C(20; 15; 7) C C(8; ; 19) Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −4 B −8 C −2 D −6 Câu 10 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B ∅ C (−3; +∞) D R Câu 11 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A a3 B 6a2 C 6a3 D 2a3 Câu 12 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 18 C 27 D 21 Câu 13 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B C D −7 Trang 1/5 Mã đề 001 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 14 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ √ tròn (C) A r = B r = C r = D r = Câu 15 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 A 2a3 B C 6a3 D 3 Câu 16 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B −384 C −192 D 384 Câu 17 Với số phức z, ta có |z + 1|2 A z · z + z + z + B |z|2 + 2|z| + C z2 + 2z + D z + z + Câu 18 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D z2 Câu 19 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 Câu 20 Những số sau vừa số thực vừa số ảo? A Khơng có số B Chỉ có số C Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực D C.Truehỉ có số B Mơ-đun số phức z số phức D Mô-đun số phức z số thực không âm (1 + i)(2 − i) √ + 3i B |z| = C |z| = Câu 22 Mô-đun số phức z = A |z| = D |z| = √ Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = 2i C P = D P = + i Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C −3 D √ Câu 25 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B ≤ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ Câu 26 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x + 2y + z − = C 3x − 2y + z + = D 3x − 2y + z − 12 = R + lnx Câu 27 Nguyên hàm dx(x > 0) x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 R3 Câu 28 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 B (−1; 0) C (1; 2) D (0; ) A ( ; 1) 2 Trang 2/5 Mã đề 001 Câu 29 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = R1 R R1 R1 Câu 30 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B C 12 D −3 R4 R4 R3 Câu 31 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 32 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D Câu 33 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 D F(x) = − e x + C A F(x) = − (2 − e x ) B F(x) = (e x + 5) C F(x) = e x + 2 2 Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 Câu 36 Gọi z1 ; z2 hai nghiệm phương trình z − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −22016 B 21008 C 22016 D −21008 Câu 37 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| B P = −2016 C P = D P = 2016 A max T = √ 2 Mệnh đề Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 39 Cho a, b, c số thực z = − + 2 A a + b + c B C a2 + b2 + c2 − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca 2z − i Câu 40 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≥ C |A| < D |A| ≤ √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B |z| > C < |z| < D |z| < 2 2 Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 D T = 13 A T = B T = C T = 13 3 Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a 3a 30 a 15 A B C D 10 Trang 3/5 Mã đề 001 Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = D P = 2loga e Câu 45 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ A 3a3 √ B 4a3 √ C 6a3 √ D 9a3 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ a3 A √ a3 15 B √ a3 15 C 16 Câu 49 Tìm tất giá trị tham số m để hàm số y = A m = −1 B m = √ a3 15 D x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001