Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ Câu Tính I = R1 √3 7x + 1dx 21 60 20 45 B I = C I = D I = 28 28 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = − ln ln 5 ln ln x x C y = + D y = +1− ln 5 ln ln A I = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 600 D 360 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = C m = −15 D m = 13 Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: a2 3b2 − a2 3a2 b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A −1 < m < B m ∈ (−1; 2) C m ∈ (0; 2) D m ≥ Câu Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −192 B 384 C −384 D 192 Câu 10 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B R C (−∞; −3) D ∅ Câu 11 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 60 C 30 D 40 Câu 12 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B x5 + sin x + C C 5x5 − sin x + C D x5 − sin x + C Trang 1/5 Mã đề 001 Câu 13 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D ax + b Câu 14 Cho hàm số y = có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; 3) B (2 ; 0) C (0 ; −2) D (3; ) Câu 15 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B J(−3; 2; 7) C I(−1; −2; 3) D H(−2; −1; 3) Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = − i C z = + i D z = −3 − i Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C 11 + 2i D −3 − 2i 2017 + 2i + i Câu 19 Số phức z = có tổng phần thực phần ảo 2−i A B C D -1 (1 + i)(2 + i) (1 − i)(2 − i) Câu 20 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = B z = z C z số ảo D |z| = z − 2i (1 − i)(2 + i) + Câu 21 Phần thực số phức z = 2−i + 3i 29 11 11 29 A − B − C D 13 13 13 13 Câu 22 √ Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i A B 29 C D 13 Câu 23 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 25 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4) Trang 2/5 Mã đề 001 Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F ′ (x) = f (x) C F(x) = f ′ (x) D F(x) = f ′ (x) + C R1 R R1 R1 Câu 28 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −3 B −8 C 12 D R0 Câu 29 Giá trị −1 e x+1 dx A − e B −e C e D e − R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy Câu 30 Biết b b x + 6x + tính ab A ab = 12 B ab = −5 C ab = D ab = R8 R4 R4 Câu 31 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R8 A [4 f (x) − 2g(x)] = −2 B f (x) = R8 R4 C f (x) = −5 D [ f (x) + g(x)] = 10 R3 Câu 32 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A ( ; 1) B (−1; 0) C (1; 2) D (0; ) 2 Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (3; 1; 4) C (−3; −1; −4) D (−3; −1; 4) Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≥ B |A| > 2z − i Mệnh đề sau đúng? + iz C |A| < D |A| ≤ Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 B T = 13 C T = D T = A T = 13 3 √ điểm A hình vẽ bên điểm Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm M Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B C D 2 Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm R Trang 3/5 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 A ; B ; C 0; D ; +∞ 4 4 Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 + · · · + z2017 + z2017 Tính giá trị biểu thức P = z2017 2015 + z2016 A P = B P = −2016 C P = D P = 2016 z Câu 41 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 B C D A Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m > A m > m < −1 B m > m < − C m < −2 r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−1; 4) C D = (1; +∞) D D = (−∞; 0) Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π C D A 6π B 5 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a 15 a 15 a A B C D 16 d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ (ABC) √ cách từ S đến mặt phẳng A a B 2a C a D a Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a < a x > ay ⇔ x < y x y C Nếu a > a = a ⇔ x = y D Nếu a > a x > ay ⇔ x < y Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx Trang 4/5 Mã đề 001 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 − 3t y = + 3t y = −2 + 3t A B C D z = + 5t z = − 5t z = −4 − 5t z = − 5t - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001