1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Các phép toán cơ bản trong xử lý ảnh

14 1K 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 431,75 KB

Nội dung

1 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 1/27 Twodimensionalsystems & Mathematicalpreliminaries HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 2/27 1. Notationsanddefinitions 2. Linearsystemsandshiftinvariance 3. FourierTransform 4. ZTransformorLaurentseries 5. Matrixtheoryandresults 6. BlockmatricesandKroneckerproducts 7. Randomsignals 8. Someresultsfromestimationtheory 9. Someresultsfrominformationtheory 2 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 3/27 1. Notationsanddefinitions Ø1Dand2Dfunctions ü1D: ),(x d  )(n d  ),(ng ),(xf ü2D: ),,( yx d  ),( nm d  ),,( nmg),,( yxf ØSeparableformsof2Dfunctions üDirac: üKronecker: ürect(x,y),sinc(x,y),comb(x,y) )()(),( yxyx d d d × = )()(),( nmnm d d d × = ØSpecialfunctions üDiracdelta: üShifting: üScaling: üKroneckerdelta: üShifting: üRectangle: üSignum: üSinc: üComb: üTriagle: 1)(lim;0,0)( 0 = ¹ = ò + - ® e e e d d  dxxxx )(')'()'( xfdxxxxf = - ò + - e e d  a x ax )( )( d d = î í ì = ¹ = 01 00 )( n n x d  )()()( nfmnmf = - å ¥ ¥ - d ï î ï í ì > £ = 2/10 2/11 )( x x xrect ï î ï í ì < - = > = 01 00 01 )( x x x xsign å ¥ ¥ - - = )()( nxxcom b d  x x xc p p sin )(sin = ï î ï í ì > £ - = 10 11 )( x xx xtri HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 4/27 2. Linearsystemsandshiftinvariance Ø2Dlinearsystems [] × H [ ] ),(),( nmxnmy H = ),( nmx üLinearsuperpositionproperty: üImpulseresponse: üImpulseresponseiscalledPSF:Inputandoutputarepositivequantities üIngeneral:Impulseresponsecantakenegativeorcomplexvalues üRegionofsupport(RoS)ofimpulseresponse üFiniteimpulseresponse(FIR)andinfiniteimpulseresponse(IIR):When RoSisfiniteorinfinite [ ] )','()', ';,( nnmmnmnmh - - H = d [ ] [ ] [ ] ),(),(),(),(),(),( 221122112211 nmyanmyanmxanmxanmxanmxa + = H + H = + H 3 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 5/27 ỉOutputofalinearsystem: [ ] ỳ ỷ ự ờ ở ộ - - H = H = ồồ )','()','(),(),( ' ' nnmmnmxnmxnmy m n d [ ] ồồ ồồ = - - H = ị ' '' ' )',',()','()','()','(),( m nm n nmnmhnmxnnmmnmxnmy d ỉSpatiallyinvariantorshiftinvariantsystem: [ ] )0,0,(),( nmhnm = H d [ ] )0,0','()','()',',( nnmmhnnmmnmnmh - - = - - H = d )','()',',( nnmmhnmnmh - - = ị ỹTheshapeofimpulseresponsedoesnotchangeastheimpulse responsemovesaboutthe(m,n)plan ỹDiscreteconvolution: ),(*),()','()','(),( ' ' nmxnmhnmxnnmmhnmy m n = - - = ồồ ỹContinuousconvolution: '')','()','(),(*),(),( dydxxxfyyxxhyxfyxhyxg ũ ũ Ơ Ơ - Ơ Ơ - - - = = ốExp.2.1 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 6/27 3. Fouriertransform ỉFTofa1Dfunction:f(x) [ ] [ ] ũ ũ Ơ + Ơ - - - +Ơ Ơ - - = = = = x x x x px px deFFxf dxexfxfF xj xj 211 2 )()()(: )()()(: ỉFTofa2Dfunction:f(x,y) [ ] [ ] ũ ũ ũ ũ Ơ + Ơ - Ơ + Ơ - + - - +Ơ Ơ - +Ơ Ơ - + - = = = = 21 )(2 2121 11 )(2 21 21 21 ),(),(),(: ), (),(),(: x x x x x x x x x x p x x p ddeFFyxf dxdyeyxfyxfF yxj yxj 4 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 7/27 Performingachangeofvariables: ỉPropertiesofFT ỹSpatialfrequencies ỹUniqueness ỹSeparability ũ ũ ũ ũ +Ơ Ơ - - +Ơ Ơ - - +Ơ Ơ - +Ơ Ơ - + - ỳ ỷ ự ờ ở ộ = = dyedxeyxfdxdyeyxfF yjxjyxj 2121 22)(2 21 ),(),(),( px px x x p x x ỹFrequencyresponseandeigenfunctionsofshiftinvariantsystems ),( yxh FH F ũ ũ +Ơ Ơ - +Ơ Ơ - + - - = '')','(),( )''(2 21 yddxeyyxxhyxg yxj x x p ',' yyyxxx - = - = )(2 21 :where yxj e x x p + = F )(2 21 21 ),(),( yxj eyxg x x p x x + H = ị HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 8/27 ỹConvolutiontheorem ỹInnerproductpreservation ),(F),(),G(),(*),(),( 212121 x x x x x x ì H = ị = yxfyxhyxg ỹCorrelationbetween2realfunctions ũ ũ +Ơ Ơ - +Ơ Ơ - + + = ã = '')','()','(),(),(),( dydxyyxxfyxhyxfyxhyxc Performingachangeofvariables: ),F(),(),(C),(),(),( 212121 x x x x x x ì - - H = ị ã - - = yxfyxhyxc ũ ũ ũ ũ +Ơ Ơ - +Ơ Ơ - +Ơ Ơ - +Ơ Ơ - = = 2121 * 21 * ),(H),(F),(),( x x x x x x dddxdyyxhyxfI Settingh=fốParsevalenergyconservationformula ũ ũ ũ ũ +Ơ Ơ - +Ơ Ơ - +Ơ Ơ - +Ơ Ơ - = 21 2 21 2 ),(F),( x x x x dddxdyyxf 5 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 9/27 üFouriertransformpairs comb(x,y) tri(x,y) rect(x,y) 1 ),( yxf ),(F 21 x x  ),( yx d  yljxkj ee p p  22 ± ± 2010 22 x p x p  yjxj ee ± ± ),( 21 lk m m x x d  ),( 00 yyxx ± ± d  )( 22 yx e + - p  )( 2 2 2 1 y e + - x p  ),(s 21 x x inc ),(s 21 2 x x inc ),( 21 x x comb HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 10/27 Innerproduct Spatialcorrelation Multiplication Convolution Modulation Shifting Scaling Separability Conjungation Linearity Rotation Propertyof2DFT FouriertransformFunction ),F( 21 )(2 2010 x x x x p  yxj e + ± )()( 21 yfxf ),( yxf ± ± ),(F),(H),(G 212121 x x x x x x × = ),(),( 2211 yxfayxfa + ),(F),(F 21222111 x x x x  aa + ),( * yxf ),(F 21 * x x - - )( F)(F 2211 x x  ),( yxf ),( byaxf [ ] abba /)/,/(F 21 x x  ),( 00 yyxxf ± ± ),( )(2 21 yxfe yxj h h p + ± ),(F 2211 h x h x m m ),(),(),( yxfyxhyxg * = ),(),(),( yxfyxhyxg × = ),(F),(H),( G 212121 x x x x x x * = ),(),(),( yxfyxhyxc · = ),(F),(H),(C 212121 x x x x x x × - - = ò ò +¥ ¥ - +¥ ¥ - = dxdyyxhyxfI ),(),( * ò ò +¥ ¥ - +¥ ¥ - 2121 * 21 ),(H),(F x x x x x x  dd ),(F 2 2 1 1 x x m m ),(F 21 x x 6 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 11/27 Theevaluationofatand yieldsFTof 4. ZTransformorLaurentseries ỉFouriertransformofsequences(Fourierseries):Selfreading ỉGeneralizationofFTseries:Ztransform ỹFor2Dsequencex(m,n): wherez 1 ,z 2 arecomplexvariables ồ ồ +Ơ -Ơ = +Ơ -Ơ = - - = m n nm zznmxzzX 2121 ),(),( ỹRegionofconverge(RoC):thisseriesconvergesuniformlyinthisregion ỹZtransformofaLSIsystemiscalledtransferfunction ),( ),( ),( ),(),(),( 21 21 21 212121 zzX zzY zzH zzXzzHzzY = ị = ỉInverseZtransform: 11where,),( )2( 1 ),( 21 2 1 1 2 1 121 2 = = = ũũ - - zzdzdzzzzzX j nmx nm p ),( 21 zzX 1 1 w j ez = 2 2 w j ez = ),( nmx HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 12/27 ỉPropertiesof2DZtransform Multiplication Convolution Modulation Shifting Separability Conjungation Linearity Rotation Property FouriertransformFunction ),( 2121 00 zzXzz nm )()( 21 nxmx ),( nmx - - ),(),( 2121 zzFzzH ì ),(),( 2211 nmxanmxa + ),(),( 21222111 zzX azzXa + ),( * nmX ),( * 2 * 1 * zzX )( F)(F 2211 x x ),( yxf ),( 00 nnmmx ),( nmxba nm ),(),( nmxnmh * ),(),( nmynmx ),( 1 2 1 1 - - zzX ),(F 21 x x ữ ứ ử ỗ ố ổ b z a z X 21 , ũ ũ ữ ữ ứ ử ỗ ỗ ố ổ ữ ữ ứ ử ỗ ỗ ố ổ 1 2 ' 2 2 ' 1 1 ' 2 ' 1 ' 2 2 ' 1 1 2 ),(, 2 1 C C z dz z dz zzY z z z z X j p 7 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 13/27 ỉCausality ỹCausal:Impulseresponseforanditstransferfunction musthaveaonesidedLaurentseries 0)( =nh 0 <n ồ Ơ = - = 0 )()( n n znhzH ỹAnticausal:Impulseresponseforanditstransferfunction musthaveaonesidedLaurentseries 0)( =nh 0 n ỹNoncausal:Neithercausaloranticausal ỉStability:Outputremainsuniformlyboundedforanyboundedinput Ơ < ồ Ơ =0 )( n nh ỉCausalandstablesystem:polesofH(z)mustlieinsidetheunitcircle ỉ2Dcase: RoCofmustincludetheunitcircles ồồ Ơ < m n nmh ),( ),( 21 zzH HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 14/27 5. Matrixtheoryandresults ỉVectorsandmatrices ỹColumnvectorofsizeN: NnnuU á = = 1),( ỹRowvectorofsizeM: MmmuU á = = 1),( ỹMatrixAofsizeMxNcontainingMrows,Ncolumns ỳ ỳ ỳ ỳ ỷ ự ờ ờ ờ ờ ở ộ = ),()2,(),1,( ),2()2,2(),1,2( ),1()2,1(),1,1( NMaMa Ma Naaa Naaa A L L L L ỹIndexnotation: { } 1,0),,( - Ê Ê = NnmnmaA NN ỹAnimageisusuallyvisualizedasamatrix ốExp.2.2 8 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 15/27 ØRowandcolumnordering üRoworderedvector(rowstacking) [ ] T T NMxMxNxxNxxxx ),( ,),1,(),2( ,),1,2(),,1( ,),2,1(),1,1( L = [ ] T T NMxMxMxxMxxxx ),( ,),,1()2,( ,),2,1(),1,( ,),1,2(),1,1( L = üColumnorderedvector(columnstacking) ØMatrixtheorydefinitions { } ),( nmaA = üMatrix: üTranspose: { } ),( mnaA T = { } ),( ** nmaA = üComplexconjungate: { } )( nmI - = d üConjungatetranspose: üIdentitymatrix: üNullmatrix: { } 0 =O { } ),( ** mnaA T = üMatrixaddition: { } ),(),( nmbnmaBA + = + :A,B:Samedimension üScalarmultiplication: { } ),( nmaA a a = üMatrixmultiplication: å = = K k nkbkmanmc 1 ),(),(),( A:MxK,B:KxN,C:MxN HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 16/27 üVectorinnerproduct: å = = )()(, ** nynxYXYX T :Scalarquantity,ifequal0 èXandYareorthogonal üVectorouterproduct: { } )()( nymxXY T = :X:Mx1,Y:Nx1,XY T :MxN üSymmetric: T AA = ü Hermitian: T AA * = :RealsymmetricmatrixisHermitan.Eigenvaluesarereal üDeterminant: A üRankofA:Numberofindependentrowsorcolumns üInversematrix: IAAAA = = - - 11 :Squarematrixonly üSingular:A 1 doesnotexistand 0 =A üEigenvalues:allrootsof k l  0 = - IA k l üEigenvectors:allsolutionsof k F 0, ¹ F F = F kkkk A l 9 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 17/27 ØTransposeandconjungaterules [ ] [ ] [ ] [ ] [ ] ** * 1 1 * * .4 .3 .2 .1 BAAB AA ABAB AA T T TT T TT = = = = - - ØToeplitzandcirculantmatrices ú ú ú ú û ù ê ê ê ê ë é = - - + - - + - - 0121 12 2101 110 ,,, ,, , tttt tt tttt ttt A N N N L L L L ØCirculantmatrixC ú ú ú ú ú ú û ù ê ê ê ê ê ê ë é = - - - - 0121 2 2101 1210 ,,, ,, ,, cccc  c cccc cccc C N NN N L L L L CisalsoToeplitzandc(m,n)=c((mn)moduloN) èExp.2.3 èExp.2.4 t(i,j)=t ij :Constantelementsalongthe maindiagonalandsubdiagonal HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 18/27 whereandareeigenvaluesandeigenvectorsofR üOtherform,whichisthesetofeigenvalueequations ØOrthogonalandunitarymatrices üOrthogonalmatrix: üUnitarymatrix: IAAAAAA TTT = = = - ***1 or èExp.2.5a ØDiagonalforms üIfRisHermitianmatrix,thereexistsaunitarymatrixΦsuchthat whereΛisadiagonalmatrixcontainingeigenvaluesofR L = F RΦ *T L = ΦRΦ Nk kk ,,2,1,ΦRΦ k L = = l { } k l  k Φ èExp.2.5b IAAAAAA TTT = = = - or 1 10 HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 19/27 Ø isblockToeplitzifisToeplitzor 6. BlockmatricesandKroneckerproducts ØBlockmatricesofsize:eachelementisamatrixitself ú ú ú ú ú û ù ê ê ê ê ê ë é = À nmmm n n AAA AAA AAA ,2,1, ,22,21,2 ,12 ,11,1 , , , L L L L wherearematrices ji A , )(, jiji AA - = Ø isblockcirculantifiscirculant nmAA njiji = = - , )ulomod)((, èExp.2.6 èExp.2.7 ØKroneckerproducts:A:M 1 xM 2 ,B:N 1 xN 2 : ØSeparableoperations:selfreading { } BnmaBA ),( = Ä qp ´ À ji A , À ji A , nm´ HanoiUniversityofScienceandTechnology SchoolofElectronicsandTelecommunications 2Dsystemsandmathematicalpreliminaries **0 1/2012 Introduction 20/27 ü isanNx1vector 7. Randomsignals ØDefinitions:givenasequenceofrandomvariablesu(n) üMean: üVariance: üCovariance: üCrosscovariance: üAutocorrelation: üCrosscorrelation: [ ] )()()( nuEnn u = = m m [ ] 2 2 2 )()()()( nnuEnn u m s s - = = [ ] [ ] [ ] { } )'()'()()()',()'(),( ** nnunnuEnnrnunuCov u m m - - = = [ ] [ ] [ ] { } )'()'()()()',()'(),( * * nnvnnuEnnrnvnuCov vuuv m m - - = = [ ] )'()()',()()()',()',( ** nnnnrnunuEnnanna uu m m - = = = [ ] )'()()',()()()',( * * nnnnrnvnuEnna vuuvuv m m - = = ØForvectorofsizeNx1:u [ ] { } )(nE m = = μu ü isanNxNmatrix [ ] [ ] { } )',())(( ** nnrECov T = = = - - = RRμuμuu u ü isanNxNmatrix [ ] [ ] { } )',())((, * * nnrECov uv T = = - - = uvvu Rμvμuvu

Ngày đăng: 08/05/2014, 15:54

TỪ KHÓA LIÊN QUAN

w