Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
1,5 MB
Nội dung
ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP GIẢI TÍCH TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 052 Câu Tìm tập hợp nghiệm bất phương trình A Đáp án đúng: B Câu B Trên mặt phẳng tọa độ, điểm A C B D quay xung quanh trục Ox Thể tích B C D Giải thích chi tiết: Cho hình phẳng giới hạn đường Ox Thể tích khối trịn xoay tạo thành bằng: A B Hướng dẫn giải C với quay xung quanh trục D Tọa độ giao điểm đường đường Câu Cho hình phẳng giới hạn đường khối tròn xoay tạo thành bằng: A Đáp án đúng: B D điểm biểu diễn số phức đây? C Đáp án đúng: C với điểm Vậy thể tích khối Tọa độ giao điểm tròn xoay cần tính là: Câu Miền khơng bị gạch chéo hình bên biểu diễn miền nghiệm hệ bất phương trình nào? A C Đáp án đúng: B B D Câu Cho hình thang cong Giải thích chi tiết: Cho hình thang cong vật thể tròn xoay tạo thành cho hình đây? A Lời giải B C tiếp tuyến A Đáp án đúng: A Giải thích chi tiết: Lời giải B D giới hạn đường D quay quanh trục hồnh có đạo hàm điểm B Thể tích quay quanh trục hồnh tính theo cơng thức Thể tích vật thể trịn xoay tạo thành cho hình Câu Cho hàm số Thể tích vật thể trịn quay quanh trục hồnh tính theo cơng thức đây? C Đáp án đúng: C giới hạn đường xoay tạo thành cho hình A Biết có hệ số góc C Khi nguyên hàm hàm số D Ta có Do tiếp tuyến điểm có hệ số góc nên suy Suy Khi , mà điểm thuộc đồ thị nên Khi Câu Tính mơđun số phức thỏa mãn điều kiện: A B C Đáp án đúng: C D Câu Tập nghiệm bất phương trình A Đáp án đúng: A B Giải thích chi tiết: là: C D Điều kiện: Đặt VẬN DỤNG Câu Hình giới hạn Tính thể tích khối trịn xoay quay hình quanh trục Ox A Đáp án đúng: A B 33 C D Giải thích chi tiết: Câu 10 Thể tích khối trịn xoay tạo nên ta quay quanh trục Ox, hình phẳng S giới hạn đường: là: A B C D Đáp án đúng: D Giải thích chi tiết: Thể tích khối trịn xoay tạo nên ta quay quanh trục Ox, hình phẳng S giới hạn đường: là: A B C D Câu 11 Có tất giá trị tham số để giá trị nhỏ hàm số A Đáp án đúng: B B Giải thích chi tiết: +) Đặt D +) Ta có: +) C +) Suy Vậy Cách 1: Giải hệ bất phương trình Ta xét trường hợp sau: TH1: TH2: Vậy có hai giá trị tham số Cách 2: sử dụng đồ thị thỏa mãn Từ đồ thị suy Cách 3.1: Giải phương trình Để Cách 3.2: Giải phương trình TH1: TH2: Câu 12 Nghiệm nguyên dương lớn bất phương trình: A B C Đáp án đúng: B Câu 13 Tìm thể tích trục thuộc khoảng sau đây? D khối tròn xoay tạo quay hình thang cong, giới hạn đồ thị hàm số hai đường thẳng xung quanh trục A B C Đáp án đúng: B D Câu 14 Cho hai số phức A Đáp án đúng: B B Phần ảo số phức C D Giải thích chi tiết: Ta có: Suy Vậy phần ảo số phức Câu 15 Cho hàm số có bảng biến thiên sau: Điểm cực tiểu hàm số cho A B Đáp án đúng: D Câu 16 Với C số thực dương tùy ý , D A B C Đáp án đúng: B D Câu 17 Số giao điểm đồ thị hàm số A Đáp án đúng: B trục hoành B C Giải thích chi tiết: Phương trình hồnh độ giao điểm D Vậy số giao điểm Câu 18 Điều kiện cần đủ để hàm số y=− x 3+ ( m+1 ) x 2+ x − đồng biến đoạn [ ; ] 3 3 A m< B m ≥ C m ≤ D m> 2 2 Đáp án đúng: B Câu 19 Giá trị lớn hàm số A B Đáp án đúng: D Giải thích chi tiết: Tập xác định: ; đoạn C bao nhiêu? D Ta có: Vậy Câu 20 Cho hàm số liên tục có đạo hàm cấp hai Biết đồ thị hàm số đường cong hình vẽ bên Xác định thứ tự hình A B D C Đáp án đúng: A Giải thích chi tiết: Cho hàm số liên tục có đạo hàm cấp hai số đường cong hình vẽ bên Xác định thứ tự hình A B C D Lời giải Đáp án B đáp án D loại đồ thị Biết đồ thị hàm lại có cực trị Đáp án C loại Vậy chọn đáp án A với nên phải hàm số đồng biến , nhiên nên dẫn đến điều vơ lý hàm số nghịch biến nên vô lý Câu 21 Cho hàm số thứ cắt , có đồ thị điểm thứ có tọa độ có tọa độ có tọa độ B Tiếp tuyến Tiếp tuyến cuả cắt cắt điểm điểm thứ là cấp số nhân với số hạng đầu C D Hoành độ giao điểm thuộc biết Giải thích chi tiết: Ta có Tiếp tuyến có hoành độ Tiếp tục tiếp tuyến Tìm A Đáp án đúng: B Xét điểm có dạng: nghiệm phương trình: Suy ra: ta dãy công bội với Từ giả thiết suy : Câu 22 Cho hàm số có bảng biến thiên sau Số nghiệm thực phương trình A Đáp án đúng: D B C D Câu 23 Thể tích khối trịn xoay sinh cho hình phẳng giới hạn parabol thẳng quay quanh trục A C Đáp án đúng: A đường Giải thích chi tiết: Phương trình hồnh độ giao điểm: B D Khi quay hình phẳng xung quanh trục ta khối tròn xoay giới hạn Do đó, thể tích khối trịn xoay tạo thành là: Câu 24 Cho với A Đáp án đúng: C Câu 25 Cho Mện đề đúng? B C số thực dương Viết biểu thức A Đáp án đúng: B B Giải thích chi tiết: Cho kết A Giải : B dạng lũy thừa số C số thực dương Viết biểu thức C D Câu 27 Nếu B D ta kết dạng lũy thừa số ta Câu 26 Tập nghiệm bất phương trình A Đáp án đúng: C D với C hàm số A B C D D Đáp án đúng: B Câu 28 Cho số phức A Điểm biểu diễn số phức liên hợp C Đáp án đúng: A Giải thích chi tiết: Cho số phức A Lời giải B D Điểm B biểu diễn số phức liên hợp C D Ta có , nên Câu 29 Một loại thuốc dùng cho bệnh nhân nồng độ thuốc máu bệnh nhân giám sát bác sĩ Biết nồng độ thuốc máu bệnh nhân sau tiêm vào thể tính theo cơng thức Sau tiêm thuốc nồng độ thuốc máu bệnh nhân cao nhất? A Đáp án đúng: D B Giải thích chi tiết: Với , Cho Bảng biến thiên Vậy Cách : Với Do đó, Câu 30 C ta có D , ta có Dấu “ ” xảy Vậy 10 Trong mặt phẳng ( Oxy ), cho điểm A ( ; )và u⃗ ( ;1 ) Tìm tọa độ điểm M cho điểm ảnh qua phép tịnh tiến theo u⃗ A M ( ; ) B M ( 2; ) C M ( −2 ; ) D M ( −2 ; −1 ) Đáp án đúng: C Giải thích chi tiết: Trong mặt phẳng (Oxy ), cho điểm A ( ; )và u⃗ ( ;1 ) Tìm tọa độ điểm M cho điểm ảnh qua phép tịnh tiến theo u⃗ A M ( −2 ; ) B M ( −2 ; −1 ) C M ( 2; ) D M ( ; ) Lời giải x M = x A − xu⃗ =1− 3=− Ta có: T ⃗u ( M )= A ⇔ \{ Vậy M ( −2 ; ) y M = y A − y ⃗u=2 −1=1 Câu 31 Cho hai số thực A C Đáp án đúng: C , Khẳng định đúng? B D Giải thích chi tiết: Cho hai số thực , Khẳng định đúng? A B C Lời giải D Ta có : Câu 32 Cho hai hàm số với hàm số A Đáp án đúng: D liên tục Biết hàm số , có đồ thị hình vẽ Đồng thời diện tích giới hạn hai đồ thị hàm số Biết diện tích hình phẳng giới hạn hai đồ thị B Giá trị bằng: C D 11 Giải thích chi tiết: Cho hai hàm số , với hạn hai đồ thị hàm số phẳng giới hạn hai đồ thị hàm số A B Lời giải C D liên tục Biết hàm số có đồ thị hình vẽ Đồng thời diện tích giới và Biết diện tích hình Giá trị bằng: Dựa vào đồ thị Theo đề Ta có: Theo đề: Diện tích hình phẳng giới hạn hai đồ thị hàm số Vậy giá trị Câu 33 Cho tam giác vng có Khi quay tam giác vng đường gấp khúc tạo thành hình nón có độ dài đường sinh A Đáp án đúng: A Giải thích chi tiết: B C D quanh cạnh góc 12 Ta có chiều cao hình nón , bán kính đáy độ dài đường sinh là: Câu 34 Cho phương trình thuộc đoạn Có giá trị nguyên tham số để phương trình có nghiệm A Đáp án đúng: C B C Giải thích chi tiết: Điều kiện: Đặt D , Ta có phương trình dạng: Phương trình Phương trình có nghiệm Với điều kiện Để phương trình nghiệm có nghiệm ln thỏa mãn Phương trình Phương trình có nghiệm 13 Với điều kiện Để Ta có nghiệm phương trình có nghiệm ln với Vậy phương trình có nghiệm phương trình có nghiệm phương trình có nghiệm, suy Có giá trị 2019 2018 Câu 35 Giá trị biểu thức M =(3+2 √2) ⋅(3 √2−4) bằng: A (3+2 √ 2) B (3+2 √ 2) ⋅21009 C 21009 D (3−2 √ 2)⋅21009 Đáp án đúng: B HẾT - 14