LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x − 1 1 = y + 2 −1 = z 2 V[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x − y + 2z = Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 4m2 − m2 − A B C D m 2m 2m 2m Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C ln − D ln + A − ln 2 2 ′ Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x + x + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C < m < D m < 3 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 3π C 4π D π Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (0; 3] C (−∞; −3] ∪ [3; +∞) D [−3; 3] Câu 10 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; −3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) A → B → C → D → R Câu 11 6x5 dxbằng A 30x4 + C B 6x6 + C C x6 + C D x6 + C Câu 12 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có môđun nhỏ 6 27 27 27 A z = + i B z = − i C z = − − i D z = − + i 5 5 5 5 Trang 1/5 Mã đề 001 √ Câu √ 13 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = 2a D d = a Câu 14 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại −a = (4; −6; 2) Phương Câu 15 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t B x = + 2ty = −3tz = −1 + t C x = + 2ty = −3tz = + t D x = −2 + 2ty = −3tz = + t Câu 16 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 3a3 C 2a3 D 27a3 Câu 17 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B C 11 D R4 R4 R4 Câu 18 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C −1 D Câu 19 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = lnx3 C y′ = x ln1 A y′ = − x ln1 D y′ = 1x Câu 20 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (3; +∞) C (−∞; 1) D (0; 2) Câu 21 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 34 B 14 C 21 D 52 Câu 22 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 23 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1) C [1; +∞) D (−∞; 1] Câu 24 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vuông góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 25 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 26 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 A 2a B a C a D a 3 Câu 27 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; 2; 3) B (−1; −2; −3) C (1; 2; −3) D (1; −2; 3) Trang 2/5 Mã đề 001 Câu 28 Tập nghiệm bất phương trình x+1 < A [1; +∞) B (1; +∞) C (−∞; 1] R4 R4 R4 Câu 29 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B −1 C D (−∞; 1) D Câu 30 Trên tập hợp số phức, xét phương trình z − 2(m + 1)z + m = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D R dx = F(x) + C Khẳng định đúng? Câu 31 Cho x 1 A F ′ (x) = B F ′ (x) = − C F ′ (x) = D F ′ (x) = lnx x x x Câu 32 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B πrl C πrl2 D 2πrl A πr2 l 3 Câu 33 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 34 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C 5π D A 25π B z−z =2? Câu 35 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường tròn B Một đường thẳng C Một Parabol D Một Elip z Câu 36 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác cân C Tam giác OAB tam giác vuông D Tam giác OAB tam giác nhọn 2 Câu 37 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = √ x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = + 27i hoặcw = − 27i B w = 27 − i hoặcw = 27 √ + i √ √ √ C w = − 27 − i hoặcw = − 27 + i D w = + 27 hoặcw = − 27 Câu 38 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B C √ D √ 13 z+i+1 Câu 39 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Parabol B Một Elip C Một đường thẳng D Một đường trịn √ Câu 40 (Tốn Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| < B |z| > C ≤ |z| ≤ D < |z| < 2 2 √ 2 Câu 41 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2| − |z − i| đạt giá trị lớn Tính |z| √ √ √ A |z| = 50 B |z| = 33 C |z| = D |z| = 10 Trang 3/5 Mã đề 001 Câu 42 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = A max |z| = B max |z| = C max |z| = √ 2, tìm max |z| D max |z| = Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 44 Tìm tất giá trị tham số m để hàm số y = A m = B Khơng có m Câu 45 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + 2πR2 r Câu 47 Tìm tập xác định D hàm số y = log2 D S = πRl + πR2 3x + x−1 A D = (−1; 4) ———————————————– B D = (−∞; −1] ∪ (1; +∞) C D = (1; +∞) D D = (−∞; 0) Câu 48 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 √ Câu 49 Cho bất phương trình 2(x−1)+1 C y = −x4 + 2x2 + D y = x3 − 3x2 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 3a 30 A B C D 2 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001