LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 1 B √ π C π D 0 Câu 2[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ sin 2x Câu Giá trị lớn hàm R bằng? √ số y = ( π) A B π C π D Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m > D m ≥ Câu Cho a, b hai số thực dương Mệnh đề đúng? ln a a B ln(ab2 ) = ln a + (ln b)2 A ln( ) = b ln b C ln(ab2 ) = ln a + ln b D ln(ab) = ln a ln b Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 2.a 2π 2.a π 3.a2 A π 3.a B C D 3 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + C y = x4 + D y = −x4 + 2x2 + Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m = D m , Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C ln + D − ln − 2 2 Câu Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C −1 ≤ m < D m < −1 Câu 10 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B −4 C 2i D Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−1; 0) B (1; +∞) C (−∞; 1) D (0; 1) Câu 12 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC √ 2a Tính thể tích V khối lăng trụ ABC.A B C 3 √ a 2a A V = B V = C V = 3a3 D V = a3 3 R3 Câu 13 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 A B 10 32 C D Trang 1/5 Mã đề 001 Câu 14 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (0; 2) B (2; +∞) C (−2; 0) D (−∞; −2) R Câu 15 6x5 dxbằng A x6 + C B x6 + C C 30x4 + C D 6x6 + C y z−2 x+1 = = Viết Câu 16 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2y + = C (P) : x − 2z + = D (P) : y + z − = Câu 17 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (2; 3) C (3; +∞) D (−∞; 3) Câu 18 Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 48 B 90 C 49 Câu 19 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C 36 D 89 D −77 Câu 20 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 21 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 22 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = π1 xπ−1 Câu 23 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 B 16 C 15 D 16π A 16π 9 15 i R2 R2h Câu 24 Nếu f (x)dx = 21 f (x) − dx A B C −2 D R Câu 25 Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = ln x B F ′ (x) = 1x C F ′ (x) = x22 D F ′ (x) = − x12 ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (−2; 0) C (0; −2) Câu 26 Cho hàm số y = D (0; 2) Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (0; 2) B (0; −2) C (−2; 0) D (2; 0) Câu 28 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D 2 Câu 29 Tích tất nghiệm phương trình ln x + 2lnx − = 1 A B C −2 D −3 Trang 2/5 Mã đề 001 R dx = F(x) + C Khẳng định đúng? x A F ′ (x) = B F ′ (x) = − C F ′ (x) = lnx x x Câu 30 Cho D F ′ (x) = x Câu 31 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = sinx + x2 + C R R x2 + C C f (x) = −sinx + x2 + C D f (x) = −sinx + Câu 32 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (−∞; 3) C (2; 3) D (3; +∞) Câu 33 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 12 C D 11 Câu 34 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = Câu 35 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C (x − 1)2 + (y − 4)2 = 125 D x = Câu 36 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B C 25π D 5π A √ Câu 37 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = D |z| = 33 A |z| = 10 Câu 38 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = − 27 27 + i B w = 27√− i hoặcw = 27 +√i √ − i hoặcw = − √ C w = + 27 hoặcw = − 27 D w = + 27i hoặcw = − 27i √ Câu 39 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 40 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C D √ 13 Câu 41 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C π D 3π Câu 42 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 2π C 4π D π Trang 3/5 Mã đề 001 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 33π C 6π D 32π Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 45 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B C 32 x2 )=8 D 64 Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng C 36080254 đồng B 36080251 đồng D 36080253 đồng √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = (x2 x − 1)log4 e C y′ = (x2 x − 1) ln D y′ = 2(x2 x − 1) ln Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −4 D −2 Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001