1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (507)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 120 KB

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 √ x + 2017 A ( 1 4 ;+∞) B (0[.]

LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B (0; ) C (0; 1) D (1; +∞) A ( ; +∞) 4 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m ≥ D m > Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A 3(m ) B (m ) C (m ) D (m2 ) Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(5; 9; 5) D C(1; 5; 3) 2x + 2017 (1) Mệnh đề đúng? Câu Cho hàm số y = x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ 1 B − ln C ln + A − ln − 2 Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = 36 B yCD = 52 C yCD = ; y = 0; x = 0; x = (x + 1)(x + 2)2 D ln − D yCD = −2 x+1 Câu Tập nghiệm bất phương trình log3 (10 − ) ≥ − x chứa số nguyên A Vô số B C D 3 Câu 10 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B −1 ≤ m < C m < −1 D −1 ≤ m ≤ Câu 11 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C + log5 a D − log5 a Câu 12 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m ≤ −3 B −4 ≤ m < −3 C m > −4 D −4 < m < −3 Trang 1/5 Mã đề 001 Câu 13 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; 2; 3); R = C I(1; −2; 3); R = D I(1; 2; −3); R = Câu 14 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M(− ; ; −1) C M( ; ; −1) D M(− ; ; 2) A M(− ; ; −1) 4 4 Câu 15 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 1) A → B → C → D → Câu 16 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A −4 B 2i C D Câu 17 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 32   B ln 6a2 C ln 23 D ln a Câu 18 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B C 12 D 11 Câu 19 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 3 a C 2a D 33 a A a Câu 20 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3) Câu 21 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 15 B 17 C D Câu 22 Phần ảo số phức z = − 3i A B −2 C −3 D Câu 23 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 24 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n2 = (1; −1; 1) Câu 25 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A Q(1; 2; −3) B P(1; 2; 3) C N(2; 1; 2) z+3 −2 Điểm thuộc d? D M(2; −1; −2) Câu 26 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (1; 2; −3) C (−1; −2; −3) D (−1; 2; 3) Câu 27 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −2 B C −3 D Câu 28 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D 2 Câu 29 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (1; 3) C (0; 2) D (3; +∞) Trang 2/5 Mã đề 001 x−1 y−2 z+3 Câu 30 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3) Câu 31 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 12 C 11 D Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (−6; 7) D (7; 6) Câu 33 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x3 − 3x − B y = x2 − 4x + C y = D y = x4 − 3x2 + x−1 Câu 34 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C −1 D Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi độ dài MN √ A MN = B MN = C MN = D MN = Câu 36 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 4π C 3π D 2π Câu 37 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x − y + = D x + y − = 1+i z Câu 38 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 A S = B S = C S = D S = 4 Câu 39 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 40 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D −2 − 3i Câu 41 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 42 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 x+cos3x Câu 43 Tính đạo hàm hàm số y = A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln ′ x+cos3x C y = (1 − sin 3x)5 ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 3/5 Mã đề 001 Câu 44 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng C 36080255 đồng B 36080254 đồng D 36080253 đồng Câu 46 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 4a3 C 6a3 D 12a3 Câu 47 Hàm số hàm số sau đồng biến R 4x + x+2 A y = x3 + 3x2 + 6x − B y = C y = x4 + 3x2 D y = −x3 − x2 − 5x Câu 48 Chọn mệnh đề mệnh đề sau: A R3 |x − 2x|dx = − B R3 R3 D R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx R3 (x − 2x)dx + 1 C R2 R2 |x − 2x|dx = |x − 2x|dx − 2 R3 |x2 − 2x|dx Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 B C D A 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 19:24

w