LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1 (x + 1)(x + 2)2 ;[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln C ln + D − ln − A ln − 2 2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m = D m , Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(0; 1; −2) D I(1; 1; 2) Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 (m2 ) C 3(m2 ) (m ) D A (m2 ) B Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B < m < C Không tồn m D m < 3 Câu Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = B yCD = 52 C yCD = −2 D yCD = 36 Câu Biết R3 A f (x)dx = R3 B g(x)dx = Khi R3 [ f (x) + g(x)]dx C −2 D √ Câu 10 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x − 4)2 + (y + 8)2 = 20 C (x + 4)2 + (y − 8)2 = 20 √ B (x + 4)2 + (y − 8)2 = √5 D (x − 4)2 + (y + 8)2 = Câu 11 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B −1 ≤ m ≤ C m > D −1 ≤ m < Câu 12 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng (S AC), (S BC) Tính cos√ 3 15 A B C D 5 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m < −3 B −4 < m ≤ −3 C −4 ≤ m < −3 D m > −4 Câu 14 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = C S = D S = −5 Câu 15 Số phức z = − 3i có phần ảo A 3i B C −3 D y z−2 x+1 = = Viết Câu 16 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2y + = C (P) : y + z − = D (P) : x − 2z + = Câu 17 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl B 23 πrl2 C 31 πr2 l D 2πrl Câu 18 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (−1; 2; 3) C (−1; −2; −3) D (1; 2; −3) Câu 19 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln 6a2 C ln a A ln 32 D ln 32 Câu 20 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A 35 B 35 C 35 D 71 Câu 21 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (−2; −4; −6) C (2; 4; 6) D (1; 2; 3) i R2 R h1 Câu 22 Nếu f (x)dx = f (x) − dx A B C D −2 Câu 23 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (3; +∞) C (12; +∞) = = Câu 24 Trong không gian Oxyz, cho đường thẳng d : A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) x−1 y−2 −1 D (−∞; 3) z+3 −2 Điểm thuộc d? D Q(1; 2; −3) Câu 25 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 26 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 14 C 11 + D 28 Câu 27 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (−1; 2) D (0; 1) Câu 28 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (−1; −2; −3) C (2; 4; 6) D (1; 2; 3) Trang 2/5 Mã đề 001 ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; 2) B (2; 0) C (0; −2) Câu 29 Cho hàm số y = D (−2; 0) Câu 30 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d < R C d = R D d > R R4 R4 R4 Câu 31 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (1; 2; −3) C (−1; 2; 3) D (−1; −2; −3) R2 R2 Câu 33 Nếu f (x) = [ f (x) − 2] A B C D −2 Câu 34 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B π C 2π D 4π Câu 35 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D z+i+1 Câu 36 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường thẳng B Một đường tròn C Một Elip D Một Parabol Câu 37 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Hai đường thẳng C Một đường thẳng D Parabol Câu 38 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu z w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác C Tam giác OAB tam giác nhọn B Tam giác OAB tam giác cân D Tam giác OAB tam giác vuông √ Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 Câu 40 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 5π C D 25π Câu 41 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B π C 4π D 2π −2 − 3i Câu 42 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ B max |z| = C max |z| = D max |z| = A max |z| = Câu 43 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = −x3 − x2 − 5x 4x + C y = D y = x4 + 3x2 x+2 Trang 3/5 Mã đề 001 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B 32 C r Câu 46 Tìm tập xác định D hàm số y = log2 64 x2 )=8 D 3x + x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; 0) D D = (1; +∞) Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ B C D A 2 Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 33π B 31π C 6π D 32π Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + 2n + m B log2 2250 = 2mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 3mn + n + n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001