1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (729)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 122,15 KB

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A π B √ π C 0 D 1 Câu 2[.]

LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + (ln b)2 B ln(ab) = ln a ln b a ln a C ln(ab2 ) = ln a + ln b D ln( ) = b ln b 2x + 2017 (1) Mệnh đề đúng? Câu Cho hàm số y = x + A Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích√của khối nón √ 4π 2.a3 2π.a3 π 2.a3 π.a3 B C D A 3 3 Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = 52 D yCD = Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + D y = x4 + 2x2 + Câu Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B m < −1 C −1 ≤ m ≤ D −1 ≤ m < Câu 10 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A x B (x + 1) C (2x) D 3x(x2 + 1) 2 Trang 1/5 Mã đề 001 Câu 11 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, B π2 + 15π 16 C π2 + 16π − 16 f (x) π2 − 16 √ Câu 12 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ √ B (x + 4)2 + (y − 8)2 = A (x − 4)2 + (y + 8)2 = C (x + 4)2 + (y − 8)2 = 20 D (x − 4)2 + (y + 8)2 = 20 A π2 + 16π − 16 16 π R4 D x−1 y+2 z = = không qua điểm đây? −1 B (−1; −3; 1) C (1; −2; 0) D A(−1; 2; 0) Câu 13 Đường thẳng (∆) : A (3; −1; −1) Câu 14 Đường cong hình bên đồ thị hàm số đây? A y = x4 − 2x2 + B y = −x4 + 2x2 + C y = −x3 + 3x2 + D y = x3 − 3x2 + Câu 15 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 210 210 105 21 √ Câu √ 16 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = a D d = 2a Câu 17 Tích tất nghiệm phương trình ln2 x + ln x − = A −3 B e12 C e13 D −2 Câu 18 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 30◦ D 45◦ = y−1 = Câu 19 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 11 B 13 C D z−1 −3 Gọi (P) mặt Câu 20 Có cặp số nguyên (x; y) thỏa mãn       log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 90 B 89 C 48 D 49 Câu 21 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n2 = (1; −1; 1) C → n1 = (−1; 1; 1) D → n3 = (1; 1; 1) Câu 22 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Câu 23 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 17 B 15 C D Câu 24 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C (−∞; 1) D [1; +∞) Trang 2/5 Mã đề 001 Câu 25 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (−∞; 1) C (3; +∞) D (1; 3) Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (−1; 2) D (1; 0) Câu 27 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D 800π Gọi A B hai điểm thuộc Câu 28 Cho khối nón có đỉnh S , chiều cao thể tích đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 x−1 y−2 z+3 Câu 29 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3) Câu 30 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ B 14 C 28 D 18 + A 11 + Câu 31 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d < R C d > R D d = Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (6; 7) C (2; 3) D (4; 5) Câu 33 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 34 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 20 D r = 22 √ Câu 35 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 33 C |z| = 50 D |z| = 10 Câu 36 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C D 5π Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Trang 3/5 Mã đề 001 Câu 38 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 A S = B S = C S = D S = 4 Câu 39 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = D max T = 10 z Câu 40 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác vuông C Tam giác OAB tam giác cân D Tam giác OAB tam giác nhọn Câu 41 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = + √27 hoặcw = − √27 B w = √ 27 − i hoặcw = 27√+ i C w = + 27i hoặcw = − 27i D w = − 27 − i hoặcw = − 27 + i z − z =2? Câu 42 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Elip B Một Parabol C Một đường tròn D Một đường thẳng Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ √ √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng 3a 30 3a 3a a 15 B C D A 10 Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 3a3 C 4a3 D 6a3 A 9a3 Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 500π 400π 250π 125π B C D A 9 Câu 46 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln r 3x + Câu 47 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−1; 4) ———————————————– C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 48 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B 6π C D 5 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A u + 3→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Trang 4/5 Mã đề 001 Câu 50 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 6π ln + 5 C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 19:18

w