LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R A m[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 Câu Đạo hàm hàm số y = log √2 3x − là: 6 B y′ = D y′ = A y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B ( ; +∞) C (0; 1) D (1; +∞) 4 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + C y = x4 + 2x2 + D y = −x4 + Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − 12 m2 − A B C D 2m 2m m 2m R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B − sin 3x + C C sin 3x + C D sin 3x + C 3 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 (m ) C (m ) D 3(m2 ) A (m ) B Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 x+1 y z−2 = = Viết Câu Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2z + = B (P) : y + z − = C (P) : y − z + = D (P) : x − 2y + = Câu 10 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 32 26 C D 3 Câu 11 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−2; 5) B M(5; −2) C M(5; 2) D M(−5; −2) A 10 B Câu 12 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(2; −6; 4) B M(−2; −6; 4) C M(5; 5; 0) D M(−2; 6; −4) Câu 13 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Trang 1/5 Mã đề 001 Câu 14 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = − + C R R sin 3x C cos 3xdx = + C D cos 3xdx = sin 3x + C Câu 15 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C [−3; 3] D (0; 3] −a = (4; −6; 2) Phương Câu 16 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t C x = −2 + 2ty = −3tz = + t D x = −2 + 4ty = −6tz = + 2t Câu 17 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 30◦ D 45◦ R4 R4 R4 Câu 18 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D Câu 19 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 20 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (2; 3) C (6; 7) D (4; 5) Câu 21 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 22 a3 B 62 a3 C 2a3 D 42 a3 Câu 22 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (12; +∞) D (3; +∞) Câu 23 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 30◦ C 60◦ D 90◦ Câu 24 Phần ảo số phức z = − 3i A −3 B C D −2 Câu 25 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) C 11 D A B 13 z−1 −3 Gọi (P) mặt Câu 26 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (−1; 2; 3) C (−1; −2; −3) D (1; 2; −3) Câu 27 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 90◦ C 45◦ D 30◦ Câu 28 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 90◦ D 30◦ Câu 29 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln C ln D ln(6a2 ) Trang 2/5 Mã đề 001 2x + Câu 30 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 A y = − B y = C y = − D y = 3 3 Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (1; 2; 3) C (−2; −4; −6) D (2; 4; 6) Câu 32 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl B πr2 l C πrl2 D 2πrl 3 Câu 33 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C (−∞; 1) D [1; +∞) Câu 34 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = 10 C max T = D max T = Câu 35 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x − y + = C x + y − = D x + y − = Câu 36 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D Câu 37 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 2π B 3π C π D 4π √ Câu 38 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = D |z| = 10 A |z| = 33 √ Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| < B |z| > C < |z| < D ≤ |z| ≤ 2 2 Câu 40 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C (x − 1)2 + (y − 4)2 = 125 D x = −2 − 3i Câu 41 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 42 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = D r = 22 Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ √ cách hai đường√thẳng MN S C 3a 3a 30 a 15 3a A B C D 10 2 Trang 3/5 Mã đề 001 Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 3π ln + C π cos x F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D 6π Câu 45 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 6π C 33π D 32π Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 6a3 C 9a3 D 4a3 A 3a3 Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080251 đồng B 36080255 đồng D 36080254 đồng Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 3mn + n + n B log2 2250 = 2mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 2mn + 2n + m Câu 50 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001