LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3+ x2và y[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B −2 ≤ m ≤ C < m < D −2 < m < Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 (m ) B 3(m ) C (m ) D (m ) A Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B − ln C − ln − D ln + 2 2 ′′ Câu Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −5 C f (−1) = −3 D f (−1) = Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; −2) C I(0; 1; 2) D I(1; 1; 2) Câu Tìm đạo hàm hàm số: y = (x2 + 1) 1 1 − 3 2 A x B (2x) C (x + 1) D 3x(x + 1) 2 Câu 10 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = C S = −6 D S = −5 Câu 11 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B −1 ≤ m < C −1 ≤ m ≤ D m < −1 Câu 12 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C Vô số D Câu 13 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) A → B → C → D → Trang 1/5 Mã đề 001 Câu 14 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ φ =? 3 15 A B C D 2 5 Câu 15 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A B 32 C 10 D 26 Câu 16 Cần chọn người công tác từ tổ có 30 người, số cách chọn D 10 C C30 A 330 B A330 Câu 17 Cho hình chóp S ABC có đáy tam giác vuông B, S A vuông góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 45◦ C 90◦ D 60◦ Câu 18 Cho số phức z = + 9i, phần thực số phức z2 A B −77 C 85 D 36 Câu 19 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A a D 22 a B 33 a C 2a Câu 20 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (−∞; 1) C (1; 3) D (3; +∞) Câu 21 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 22 a3 B 62 a3 C 42 a3 D 2a3 Câu 22 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 30 C 225 D 105 Câu 23 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 12 Câu 24 Tiệm cận ngang đồ thị hàm số y = A y = 31 B y = − 13 C 11 D 2x+1 3x−1 đường thẳng có phương trình: C y = − 32 D y = 23 Câu 25 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường tròn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (2; 0) D (0; 2) Câu 26 Cho số phức z = + 9i, phần thực số phức z2 A 85 B C 36 D −77 Câu 27 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 A y′ = B y′ = C y′ = D y′ = − x x xln3 xln3 x−1 y−2 z+3 Câu 28 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) D Q(1; 2; −3) Trang 2/5 Mã đề 001 Câu 29 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 30 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x = + 2t x=5+t y = −1 + t y = + 3t y = −1 + 3t y = + 2t A B C D z = −1 + 3t z = −1 + t z = −1 + t z = + 3t ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; 2) C (2; 0) Câu 31 Cho hàm số y = D (0; −2) Câu 32 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (−1; −2; −3) C (2; 4; 6) D (1; 2; 3) y−1 z−1 x−2 = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 33 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 34 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường tròn Tính bán kính r đường trịn A r = 20 B r = 22 C r = D r = Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = D P = A P = C P = 2 √ Câu 36 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 37 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = C max T = D max T = 10 A max T = Câu 38 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 25 15 A S = B S = C S = D S = 1+i z 15 Câu 39 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Đường tròn C Hai đường thẳng D Một đường thẳng √ Câu 40 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 50 C |z| = 10 D |z| = 33 Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x + 1)2 + (y − 2)2 = 125 B (x − 1)2 + (y − 4)2 = 125 C (x − 5)2 + (y − 4)2 = 125 D x = Trang 3/5 Mã đề 001 √ Câu 42 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? A |z| > B ≤ |z| ≤ 2 C < |z| < 2 D |z| < Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 44 Cho tứ diện DABC, tam giác ABC vuông B, DA vuông góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 45 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + m 3mn + n + C log2 2250 = n 2mn + n + n 2mn + n + D log2 2250 = n A log2 2250 = B log2 2250 = Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu 48 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D Câu 49 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = −1 + 2t x = − 2t y = + 3t y = −2 + 3t y = −2 − 3t y = −2 + 3t B C D A z = − 5t z = −4 − 5t z = + 5t z = − 5t Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001