LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ∣∣∣∣∣x∣∣∣∣∣3−mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B a D C Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x + y + 2z = Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; 2] [22; +∞) B [ ; 2] [22; +∞) C [22; +∞) D ( ; +∞) 4 Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + ln b a ln a C ln(ab2 ) = ln a + (ln b)2 D ln( ) = b ln b Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D R Câu 6x5 dxbằng A x6 + C B 30x4 + C C x6 + C D 6x6 + C R3 Câu 10 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 32 A B 26 C D 10 Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; 3; −4) −n = (−2; 3; 4) −n = (2; −3; 4) A → B → C → D → Trang 1/5 Mã đề 001 Câu 12 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 6 27 + i B z = − − i C z = − i 5 5 5 Câu 13 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 3a3 C 27a3 x+1 (C) có đường tiệm cận Câu 14 Đồ thị hàm số y = x−2 A y = x = −1 B y = −1 x = C y = x = A z = 27 D z = − + i 5 D 8a3 D y = x = Câu 15 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 16 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos φ =? 15 3 B C D A 5 2 −16 Câu 17 Có số nguyên x thỏa mãn log3 x343 < log7 A 92 B 184 C 186 x2 −16 ? 27 D 193 Câu 18 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 45◦ D 30◦ = y−1 = Câu 19 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 11 B C D 13 Câu 20 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A P(1; 2; 3) B M(2; −1; −2) C N(2; 1; 2) Câu 21 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C z+3 −2 z−1 −3 Gọi (P) mặt Điểm thuộc d? D Q(1; 2; −3) D 85 Câu 22 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D 38 Câu 23 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 6a2 B ln 32 C ln a D ln 23 Câu 24 Phần ảo số phức z = − 3i A −3 B D −2 C Câu 25 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 B 12 C 41 D A 72 Câu 26 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = C y = x2 − 4x + D y = x3 − 3x − x−1 R2 R2 Câu 27 Nếu f (x) = [ f (x) − 2] A B C −2 D Câu 28 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (7; −6) D (6; 7) Câu 29 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Trang 2/5 Mã đề 001 Câu 30 Với a số thực dương tùy ý, ln(3a) − ln(2a) B lna C ln D ln(6a2 ) A ln Câu 31 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 32 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 R4 R4 R4 Câu 33 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D √ Câu 34 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ B |z| = 50 C |z| = 33 D |z| = 10 A |z| = Câu 35 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 3π C π D 2π Câu 36 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 Câu 37 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ C MN = D MN = A MN = B MN = Câu 38 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x − y + = C x + y − = D x + y − = z Câu 39 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác cân C Tam giác OAB tam giác D Tam giác OAB tam giác nhọn z+i+1 Câu 40 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường tròn B Một Elip C Một đường thẳng D Một Parabol Câu 41 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D √ Câu 42 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| > C |z| < D < |z| < 2 2 Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 29 25 A B C D 4 4 Trang 3/5 Mã đề 001 x2 + mx + Câu 44 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B Khơng có m C m = D m = −1 Câu 45 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx C R3 2 |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + R2 (x2 − 2x)dx |x − 2x|dx = (x − 2x)dx − R3 R3 (x2 − 2x)dx Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 6a3 C 3a3 D 9a3 A 4a3 Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A 2 Câu 48 Chọn mệnh đề mệnh đề sau: e2x + C A R e2x dx = C R (2x + 1)2 dx = (2x + 1)3 +C B R sin xdx = cos x + C D R x dx =5 x + C Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080255 đồng B 36080251 đồng D 36080253 đồng Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 14 C R = 15 D R = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001