LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hìn[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 2; 0) C A(0; 0; 3) D A(1; 0; 3) Câu Biết R5 A T = 81 dx = ln T Giá trị T là: 2x − B T = C T = √ D T = Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −5 C f (−1) = −1 D f (−1) = −3 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = −2 D yCD = 52 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ C m ≥ D m ≥ −1 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 3.a 2π 2.a π 2.a2 B C D A π 3.a 3 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D x+1 Câu Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = −1 x = B y = x = −1 C y = x = D y = x = Câu 10 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln 2023 C y′ = x.2023 x−1 D y′ = 2023 x ln x −a = (4; −6; 2) Phương Câu 11 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t B x = + 2ty = −3tz = −1 + t C x = −2 + 2ty = −3tz = + t D x = + 2ty = −3tz = + t Câu 12 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 3a3 B V = a3 C V = 2a3 D V = Câu 13 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A m > −4 B −4 ≤ m < −3 C −4 < m < −3 D −4 < m ≤ −3 Trang 1/5 Mã đề 001 − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 14 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − → − − − −c = A a = B b ⊥ c C b ⊥ a D → Câu 15 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = −6 C S = D S = Câu 16 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D −16 < log7 Câu 17 Có số nguyên x thỏa mãn log3 x343 A 184 B 193 C 92 x2 −16 ? 27 D 186 Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 19 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D R4 R4 R4 Câu 20 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 Câu 21 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx D 34 A B C 32 Câu 22 Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 89 B 48 Câu 23 Phần ảo số phức z = − 3i A −2 B C 90 D 49 C −3 D Câu 24 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B C 11 D 31 z−1 −3 Gọi (P) mặt Câu 25 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (−1; 2) C (0; 1) D (1; 2) Câu 26 Phần ảo số phức z = − 3i A −2 B C −3 D Câu 27 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 30 C 105 D 210 Câu 28 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln C ln(6a2 ) D ln ′ ′ ′ Câu 29 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B a C 2a D a Trang 2/5 Mã đề 001 Câu 30 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 11 B C D 12 Câu 31 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B C −2 D −3 ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; 2) B (−2; 0) C (2; 0) Câu 32 Cho hàm số y = Câu 33 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 A y′ = B y′ = C y′ = − xln3 x xln3 D (0; −2) D y′ = ln3 x Câu 34 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x + 1)2 + (y − 2)2 = 125 B x = 2 C (x − 5) + (y − 4) = 125 D (x − 1)2 + (y − 4)2 = 125 Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 1√+ 27 hoặcw = √ − 27 B w = + √ 27i hoặcw = −√ 27i D w = − 27 − i hoặcw = − 27 + i C w = 27 − i hoặcw = 27 + i z+i+1 số ảo? z + z + 2i C Một đường trịn D Một đường thẳng Câu 36 Tìm tập hợp điểm M biểu diễn số phức z cho w = A Một Elip B Một Parabol Câu 37 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π D A 25π B 5π C √ Câu 38 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 39 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C 2π D π Câu 40 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x + y − = C x − y + = D x − y + = Câu 41 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ C MN = D MN = A MN = B MN = Câu 42 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 20 C r = D r = 22 Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m < −2 C m > m < − D m > Trang 3/5 Mã đề 001 Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 6a3 C 3a3 D 9a3 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 6π C 31π D 33π Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 B C D A 16 Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 25 B 23 C 27 D 29 Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 2mn + 2n + m C log2 2250 = 3mn + n + n D log2 2250 = 2mn + n + n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001