LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường tròn ngoại cao chiều cao tứ diện √ √ tiếp tam giác BCD và√có chiều √ π 2.a2 π 3.a2 2π 2.a2 B C π 3.a A D 3 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số đồng biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 ≤ m ≤ C −2 < m < D m = R5 dx Câu Biết = ln T Giá trị T là: 2x − 1 √ A T = B T = 81 C T = D T = Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ 3bằng 2a Tính thể tích3 khối nón √ π 2.a π.a 2π.a3 4π 2.a3 A B C D 3 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = C (S ) : (x + 2) + (y + 1) + (z − 1) = Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = R Câu R8 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 10 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D R3 Câu 11 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx A 26 B 32 C D 10 Trang 1/5 Mã đề 001 Câu 12 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a D − log5 a Câu 13 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B [−3; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3] √ Câu √ 14 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = 2a B d = a C d = a D d = a Câu 15 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ 3 15 B C D A 2 5 Câu 16 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu R17 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = − sin x + x2 + C B f (x)dx = sin x + x2 + C R R 2 C f (x)dx = sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu 18 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 45◦ C 60◦ D 30◦ Câu 19 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 A 16π B 16π C 16 D 15 15 9 Câu 20 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: C y′ = πxπ A y′ = πxπ−1 B y′ = π1 xπ−1 D y′ = xπ−1 Câu 21 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 60◦ C 45◦ D 90◦ Câu 22 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ B 22 a3 C 42 a3 D 2a3 A 62 a3 Câu 23 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 24 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 14 C 21 D 43 A 25 Câu 25 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 32 B ln 32 C ln a D ln 6a2 Câu 26 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Trang 2/5 Mã đề 001 Câu 27 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 28 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vuông góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D y−1 z−1 x−2 Câu 29 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 30 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B C 15 D 17 Câu 31 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 12 B 11 C D R2 R2 Câu 32 Nếu f (x) = [ f (x) − 2] A B C D −2 Câu 33 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 30◦ C 45◦ D 90◦ z Câu 34 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác vuông B Tam giác OAB tam giác cân C Tam giác OAB tam giác nhọn D Tam giác OAB tam giác Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w√ = x + iy mặt phẳng phức √ Để tam giác MNP √ số phức k A w = − 27 − i hoặcw = − 27 + i B w = 27 − i hoặcw = 27 +√i √ √ √ C w = + 27 hoặcw = − 27 D w = + 27i hoặcw = − 27i −2 − 3i Câu 36 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu 37 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một Elip C Một đường tròn D Một đường thẳng Câu 38 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 B √ C √ A √ D 13 Câu 39 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 1+i z Trang 3/5 Mã đề 001 A S = 25 B S = 15 C S = 15 D S = 25 Câu 40 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 5π C 25π D A Câu 41 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D Câu 42 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 3x cắt đường thẳng y = x + m Câu 43 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = D m = −2 Câu 44 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 25 23 A B C D 4 4 Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 4a3 D 6a3 Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π B 6π C D A 5 Câu 48 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 49 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C −3 ≤ m ≤ D m > −2 Câu 50 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = D m = m = −10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001