Luận án tiến sĩ toán học về lý thuyết nevanlinna cho hình vành khuyên và vấn đề duy nhất

94 1 0
Luận án tiến sĩ toán học về lý thuyết nevanlinna cho hình vành khuyên và vấn đề duy nhất

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM LEUANGLITH VILAISAVANH VỀ LÝ THUYẾT NEVANLINNA CHO HÌNH VÀNH KHUYÊN VÀ VẤN ĐỀ DUY NHẤT Ngành TOÁN GIẢI TÍCH Mã số 9460102 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚN[.]

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM LEUANGLITH VILAISAVANH VỀ LÝ THUYẾT NEVANLINNA CHO HÌNH VÀNH KHUYÊN VÀ VẤN ĐỀ DUY NHẤT Ngành: TỐN GIẢI TÍCH Mã số: 9460102 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS TS HÀ TRẦN PHƯƠNG THÁI NGUYÊN - 2022 i Lời cam đoan Tôi xin cam đoan cơng trình nghiên cứu tơi hướng dẫn PGS TS Hà Trần Phương Các kết viết chung với tác giả khác trí đồng tác giả đưa vào luận án Các kết luận án chưa cơng bố cơng trình khoa học khác Thái Nguyên, tháng 10 năm 2022 Tác giả LEUANGLITH Vilaisavanh ii Lời cảm ơn Luận án thực hoàn thành dự hướng dẫn tận tình PGS TS Hà Trần Phương Tác giả luận án xin bày tỏ lòng biết ơn chân thành sâu sắc đến thầy Tác giả xin trân trọng cảm ơn Ban Giám đốc Đại học Thái Nguyên, Ban Đào tạo Đại học Thái Nguyên, Ban Giám hiệu, Phịng Đào tạo, Ban chủ nghiệm khoa Tốn phòng Ban chức Trường Đại học Sư phạm Đại học Thái Nguyên tạo điều kiện thuận lợi giúp đỡ tác giả trình học tập nghiên cứu hoàn thành luận án Tác giả xin chân thành cảm ơn thầy, cô, bạn bè Seminar Bộ mơn Giải tích Tốn ứng dụng, Khoa Toán Trường Đại học Sư phạm - Đại học Thái Nguyên giúp đỡ, động viên tác giả nghiên cứu khoa học Tác giả xin chân thành cảm ơn Trường Đại học Savannakhet nước CHDCND Lào đồng nghiệp tạo điều kiện giúp đỡ tơi mặt q trình học tập hoàn thành luận án Cuối tác giả xin bày tỏ lòng biết ơn người thân gia đình, người chịu nhiều khó khăn, vất vả dành hết tình cảm yêu thương, động viên, chia sẻ, khích lệ để tác giả hồn thành luận án Thái Nguyên, tháng 10 năm 2022 Tác giả LEUANGLITH Vilaisavanh iii Mục lục Mở đầu Chương Hai định lý cho đường cong chỉnh hình hình vành khuyên 14 1.1 Một số kiến thức Lý thuyết phân bố giá trị cho hàm phân hình 14 1.1.1 Trường hợp hàm phân hình C 14 1.1.2 Trường hợp hàm phân hình hình vành khuyên 17 1.2 Các hàm Nevanlinna-Cartan Định lý thứ 23 1.2.1 Các hàm Nevanlinna-Cartan 23 1.2.2 Định lý thứ 25 1.3 Định lý thứ hai 26 1.3.1 Kiến thức bổ trợ 26 1.3.2 Định lý thứ hai 29 Chương Vấn đề cho đường cong chỉnh hình hình vành khuyên 41 2.1 Một số kiến thức chuẩn bị 41 2.1.1 Hàm đếm có trọng 41 2.1.2 Hai định lý với mục tiêu siêu phẳng 44 2.2 Hai định lý cho đường cong chỉnh hình 45 2.2.1 Trường hợp không xét nghịch ảnh siêu mặt 45 2.2.2 Trường hợp có xem xét điều kiện nghịch ảnh siêu mặt 53 iv Chương Vấn đề cho hm nguyờn liờn quan n gi thuyt Bră uck 57 3.1 Kiến thức bổ trợ 57 3.1.1 Phân bố giá trị cho đa thức vi phân 57 3.1.2 Họ chuẩn tắc hàm phân hình 59 3.2 Vấn đề 64 3.2.1 Tiêu chuẩn chuẩn tắc họ hàm phân hình 64 3.2.2 Định lý 77 Kết luận 82 Danh mục Cơng trình tác giả công bố liên quan đến luận án 83 Tài liệu tham khảo 84 Mở đầu Lịch sử nghiên cứu lý chọn đề tài Được bắt nguồn cơng trình R Nevanlinna từ đầu kỷ XX, Lý thuyết phân bố giá trị cho hàm phân hình (cịn gọi Lý thuyết Nevanlinna) đánh giá thành tựu sâu sắc đẹp đẽ Toán học Với nội dung bao gồm hai định lý bản: Định lý thứ Định lý thứ hai, Lý thuyết phân bố giá trị ngày thu hút quan tâm nhiều tác giả nước, thu nhiều kết quan trọng có ứng dụng nhiều lĩnh vực khác Toán học vấn đề cho hàm phân hình, hệ động lực phức, phương trình vi phân phức, Kí hiệu Pn (C) khơng gian xạ ảnh n chiều trường C Năm 1933, H Cartan mở rộng kết Nevanlinna cho trường hợp đường cong chỉnh hình vào Pn (C) đưa số ứng dụng Theo hướng nghiên cứu nhiều nhà tốn học ngồi nước cơng bố nhiều kết đặc sắc dạng định lý thứ thứ hai trường hợp khác nghiên cứu ứng dụng định lý lĩnh vực khác Toán học, đặc biệt vấn đề cho đường cong chỉnh hình Với đường cong chỉnh hình f : C → Pn (C) có biểu diễn tối giản (f0 , , fn ), hàm Tf (r) = 2π Z 2π log ∥f (reiθ )∥dθ gọi hàm đặc trưng Nevanlinna-Cartan đường cong f , ∥f (z)∥ = max{|f0 (z)|, , |fn (z)|} Cho H siêu phẳng, xác định dạng tuyến tính L Hàm Z 2π ∥f (reiθ )∥ dθ log mf (r, H) = mf (r, L) := 2π |L(f )(reiθ )| gọi hàm xấp xỉ f kết hợp với siêu phẳng H Kí hiệu nf (r, H) số không điểm L(f )(z) đĩa {|z| < r}, kể bội, nM f (r, H) số không điểm L(f )(z) đĩa {|z| < r}, bội cắt cụt số nguyên dương M Hàm Z Nf (r, H) = Nf (r, L) = r nf (t, H) − nf (0, H) dt + nf (0, H) log r t gọi hàm đếm kể bội hàm Z r M nf (t, H) − nM f (0, H) M M Nf (r, H) = Nf (r, L) = dt + nM f (0, H) log r t gọi hàm đếm bội cắt cụt M đường cong f kết hợp với siêu M phẳng H , nf (0, H) = lim nf (r, H), nM f (0, H) = lim nf (r, H) r→0 r→0 Số M kí hiệu NfM (r, H) gọi số bội cắt cụt Năm 1933, H Cartan ([4]) chứng minh hai kết sau: Định lý Cho đường cong chỉnh hình f : C → Pn (C) siêu phẳng H cho f (C) ̸⊂ H , ta có Tf (r) = Nf (r, H) + mf (r, H) + O(1) Định lý Cho đường cong chỉnh hình khơng suy biến tuyến tính f : C → Pn (C) q siêu phẳng H1 , , Hq vị trí tổng quát Pn (C) Khi bất đẳng thức (q − n − 1)Tf (r) ⩽ q X Nfn (r, Hj ) + o(Tf (r)) j=1 với r > đủ lớn nằm ngồi tập có độ đo Lebesgue hữu hạn Định lý gọi Định lý thứ nhất, Định lý gọi Định lý thứ hai với bội cắt cụt cho đường cong chỉnh hình từ C vào Pn (C) khơng suy biến tuyến tính kết hợp với siêu phẳng vị trí tổng qt Cơng trình H Cartan đánh giá quan trọng, mở hướng nghiên cứu việc phát triển lý thuyết phân bố giá trị - nghiên cứu phân bố giá trị ánh xạ phân hình, chỉnh hình - mà ngày ta biết đến với tên gọi gắn với tên hai nhà toán học xuất sắc “Lý thuyết Nevanlinna-Cartan” Các kết nghiên cứu theo hướng thời gian gần tập trung vào hai vấn đề: Xây dựng dạng định lý (định lý thứ thứ hai) cho đường cong chỉnh hình từ C miền C vào Pn (C) đa tạp đại số xạ ảnh Pn (C) với mục tiêu siêu phẳng, siêu mặt cố định di động, cách thiết lập quan hệ hàm đặc trưng Nevanlinna-Cartan với hàm xấp xỉ, hàm đếm hay hàm đếm bội cắt cụt Từ suy kết quan hệ số khuyết Nghiên cứu ứng dụng lý thuyết Nevanlinna-Cartan lĩnh vực khác toán học, chẳng hạn, nghiên cứu suy biến đường cong đại số, vấn đề cho hàm phân hình đường cong chỉnh hình, hệ phương trình vi phân, đạo hàm riêng phức, Hướng nghiên cứu thứ thu hút quan tâm nhiều nhà toán học thu nhiều kết sâu sắc, chẳng hạn, G Dethloff, E I Nochka, M Ru, P Vojta, H H Khoai, D D Thai, T V Tan, T T H An, S D Quang Năm 1983, Nochka ([33]) mở rộng kết H Cartan cho trường hợp họ siêu phẳng H1 , , Hq vị trí N −tổng quát Pn (C) Năm 2004, M Ru ([41]) đưa dạng Định lý thứ hai cho đường cong chỉnh hình khơng suy biến đại số kết hợp với siêu mặt cố định Trong ([42]), Ơng mở rộng kết cho đường cong chỉnh hình vào đa tạp đại số xạ ảnh V Năm 2007, T T H An H T Phuong ([1]) năm 2008, Q M Yan Z H Chen ([51]) chứng minh quan hệ hàm đặc trưng Tf (r) đường cong chỉnh hình f : C → Pn (C) với hàm đếm bội cắt cụt NfM (r, Dj ) trường hợp họ siêu mặt cố định {D1 , , Dq } vị trí tổng qt Ngồi ra, năm gần G Dethloff, T V Tan ([13]), D D Thai, S D Quang ([48]), L Shi ([45]), P C Hu, N V Thin ([23]) công bố số công trình theo hướng cho đường cong chỉnh hình nhiều biến phức vào Pn (C) hay đa tạp đại số xạ ảnh Pn (C) với mục tiêu siêu phẳng hay siêu mặt, cố định hay di động, vị trí tổng quát hay N − tổng quát Một ứng dụng quan trọng lý thuyết Nevanlinna-Cartan, lý thuyết Nevanlinna nghiên cứu xác định ánh xạ chỉnh hàm phân hình thơng qua ảnh ngược hay nhiều tập hữu hạn phần tử Vấn đề thu hút quan tâm nhiều nhà toán học: A Boutabaa, W Cherry, G Dethloff, H Fujimoto, M Ru, L Smiley, C C Yang, H H Khoai, D D Thai, T V Tan, S D Quang, H T Phuong nhiều tác giả khác Cho ánh xạ chỉnh hình f : U → Pn (C) biểu diễn tối giản (f0 , , fn ) f , U toàn mặt phẳng phức C miền C Với họ siêu mặt cố định D = {D1 , , Dq }, với Dj ∈ D, ta kí hiệu E f (Dj ) = {z ∈ U | Qj ◦ f (z) = không kể bội}; Ef (Dj ) = {(z, m) ∈ U × N | Qj ◦ f (z) = ordQ◦f (z) = m} Và đặt E f (D) = [ Dj ∈D E f (Dj ) Ef (D) = [ Ef (Dj ) Dj ∈D Kí hiệu F họ ánh xạ chỉnh hình khác từ U vào Pn (C) Họ siêu mặt D gọi tập xác định khơng kể bội, kí hiệu URSIM (hoặc tập xác định kể bội, kí hiệu URSCM) cho họ ánh xạ F với cặp ánh xạ f, g ∈ F , điều kiện E f (D) = E g (D) (hoặc Ef (D) = Eg (D) tương ứng) kéo theo f ≡ g Các tập URSIM, URSCM gọi chung tập xác định cho họ ánh xạ F Năm 1975, H Fujimoto ([15]) chứng minh kết vấn đề cho ánh xạ phân hình vào không gian xạ ảnh phức, cho thấy tồn tập xác định kể bội gồm 3n+2 siêu phẳng vị trí tổng quát cho họ ánh xạ phân hình phức khơng suy biến tuyến tính Kết xem mở đầu cho nghiên cứu vấn đề cho ánh xạ chỉnh hình Tiếp theo cơng trình này, năm 1983, L Smiley ([46]) giới thiệu kết vấn đề cho ánh xạ phân hình khơng suy biến tuyến tính ảnh ngược họ hữu hạn siêu phẳng, vấn đề H Fujimoto ([16]) nghiên cứu lại năm 1998 Năm 2006, G Dethloff T V Tan ([13]) xem xét vấn đề tương tự cho trường hợp siêu phẳng di động Năm 2008, việc sử dụng Định lý thứ hai với bội cắt cụt cho đường cong chỉnh hình An-Phuong ([1]), Dulock Ru ([14]) chứng minh số định lý cho đường cong chỉnh hình trường hợp siêu mặt Năm 2011 năm 2013, H T Phuong chứng minh số kết vấn đề cho đường cong chỉnh hình với mục tiêu siêu phẳng cố định hay di động (xem [35], [36]) Và nhiều kết khác vấn đề cho đường cong chỉnh hình trường hợp nhiều biến công bố M Ru, D D Thai, T V Tan, D Quang Chú ý rằng, hầu hết chứng minh kết tập xác định dựa vào dạng Định lý thứ hai với bội cắt cụt Đối với vấn đề cho hàm phân hình, năm 1926, R Nevanlinna chứng minh: Hai hàm phân hình phức khác f, g thỏa mãn f −1 (ai ) = g −1 (ai ), i = 1, , 5, f ≡ g Kết Nevanlinna cho thấy hai hàm phân hình xác định ảnh ngược năm điểm phân biệt Tiếp theo cơng trình Nevanlinna, có nhiều cơng trình tác giả ngồi nước cơng bố, tập trung vào hướng: hàm

Ngày đăng: 05/04/2023, 18:38

Tài liệu cùng người dùng

Tài liệu liên quan