1. Trang chủ
  2. » Khoa Học Tự Nhiên

2013 đề thi đề xuất chọn hsg toán lớp 10 - han

5 238 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 353,79 KB

Nội dung

1. ĐỀ THI ĐỀ XUẤT NĂM HỌC 2012-2013 2. KỲ THI CHỌN HỌC SINH GIỎI LỚP 10 THPT 3. ĐƠN VỊ: TRƯỜNG THPT NGUYỄN HỮU TIẾN Câu 1 .( 4 điểm ) Cho hàm số : 1)1(2 22  mxmxy (1) và điểm )1;2(K 1. Tìm m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt BA, sao cho tam giác KAB vuông tại K 2. Tìm m để hàm số (1) có giá trị nhỏ nhất trên   1;0 bằng 1 Câu 2 .( 4 điểm ) Giải các phương trình sau: 1. 2003267108168 22  xxxx 2. 203232152 2  xxx Câu 3. ( 6 điểm ) 1. Trong mặt phẳng toạ độ Oxy cho ba điểm )4;5(),0;1(),2;1( CBA và đường tròn (C) có phương trình: 4 22  yx a. Chứng minh rằng CBA ,, là ba đỉnh của một tam giác. Tính diện tích tam giác .ABC b. Tìm tọa độ điểm M trên đường tròn (C) sao cho MCMBMA 2 nhỏ nhất 2. Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O , điểm D là trung điểm của EAB, là trọng tâm tam giác .ACD Chứng minh rằng : OECD  Câu 4 . ( 4 điểm ) Cho hệ phương trình :        4)2( 222 2 22 yx myxyx 1. Giải hệ khi m=4 2. Tìm m để hệ có đúng hai nghiệm phân biệt Câu 5 . ( 2 điểm ) Cho a,b,c là các số dương thỏa mãn : ab+bc+ca=3 . Chứng minh rằng :       2 2 2 1 1 1 1 1 a b c 1 b c a 1 c a b abc          Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm Họ và tên thí sinh:………………………………… Số báo danh:…………………… Chữ ký của giám thị 1:……………………… Chữ ký của giám thị 2:……………… ĐÁP ÁN BIỂU ĐIỂM Câu Đáp án Điểm Câu 1(4 điểm) 1(2 điểm) Phương trình hoành độ giao điểm 01)1(2 22  mxmx (*) Để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biết A, B khi và chỉ khi 10)1(20 ,  mm 0.5 Với 1m gọi 21 , xx là hai nghiệm của phương trình (*) Theo viet ta có 1),1(2 2 2121  mxxmxx 0.25 Khi đó giả sử )0;(),0,( 21 xBxA     1;2,1;2 21  xKBxKA Để tam giác KAB vuông tại K 0.  KBKA 0,5    05)(20122 212121  xxxxxx       4 0 04 2 m m mm 0.5 4,0  mm thỏa mãn điều kiện. Vậy với 0m hoặc 4m thỏa mãn yêu cầu bài toán 0.25 2(2 điểm) Th1. 101  mm x 0 1 y 1 2 m để hàm số (1) có giá trị nhỏ nhất trên   1;0 bằng 1 211 2  mm Kết hợp với đk đang xét ta có 2m 0,25 0.25 Th2 12110  mm x 0 1 m 1 y 22  m để hàm số (1) có giá trị nhỏ nhất trên   1;0 bằng 1 )( 2 3 122 tmmm  o.25 0.25 Th3 211  mm x 0 1 y 22 2  mm để hàm số (1) có giá trị nhỏ nhất trên   1;0 bằng 1 1122 2  mmm (không thỏa mãn đk) 0.25 0.25 Kết Luận: Vậy 2m hoặc 2 3 m thỏa mãn yêu cầu bài toán 0.5 Câu 2(4 điểm) 1(2 điểm) 2003267108168 22  xxxx 2003)211()5()220()4( 2222  xx 0.5 Trong mặt phẳng tọa độ Oxy lấy )231;5(),220;(),0;4( CxBA Khi đó 22 )220()4(  xAB 22 )211()5(  xBC Mặt khác ta lại có 2003 ACBCAB 0.5 Đẳng thức xảy ra khai và chỉ khi A,B,C thẳng hàng và B nằm giữa A,C 0.5  0,  kBCkBA 41 16  x 0.5 1(2 điểm) 203232152 2  xxx (1) Điều kiện 2 15 0152  xx Pt(1) 28)24(2152 2  xx Đặt 024,152)24(15224 2  yĐkxyxy 0.5 Pt(1) trở thành 152)24( 2  yx Vậy ta có hệ pt        152)24( 152)24( 2 2 xy yx 0.5 Giải hệ ta được 2 nghiệm 6 2219 , 2 1   xx 1 Câu 3(6 điểm) 1(4 điểm) a. )4;5(),0;1(),2;1( CBA + Ta có )2;4(),2;0(  ACAB 0.5 0,  kvoiACkAB suy ra A,B,C không thẳng hàng. Vậy A,B,C là ba đỉnh của một tam giác + 24BC , pt (BC) 01  yx + đường cao 2),(  BCAdAH Diện tích tam giác 4 ABC S 0.5 0.5 0.25 0.25 + Đường tròn (C) có tâm )0;0(O bán kính R=2 0.25 + Gọi I là điểm thỏa mãn 02  ICIBIA )2;2(I 0.25 Khi đó ta có IMMIMCMBMA 442  Vậy MCMBMA 2 nhỏ nhất khi và chỉ khi IM nhỏ nhât (trong đó I cố định). Vậy ta tìm )(CM  để IM nhỏ nhất 0.5 + Mặt khác ROI  24 nên I nằm ngoài đường tròn (C). Vậy IM nhỏ nhất  M là giao điểm của đường thẳng OI với đường tròn (C), trong đó M nằm giữa O và I 0.5 + Phương trình đt OI: xy  + Tìm giao của đt OI với đt tròn (C) là )2;2(),2:2(  . 0.25 Vì M nằm giữa O và I )2;2(M 0.25 2(2 điểm) Gọi M là trung điểm của AC Vì E là trọng tâm tam giác ACD nên ODOMODOCOAOE  23 D là trung điểm của AB nên CBCACD 2 Vì (O) ngoại tiếp ABC nên ACOMABOD  ; , ABC cân nên OD=OM Do đó , DMOMOD  )( mà BCOMODBCDM  )(// Ta có : ))((2.3 CBCAODOCOACDOE  )(.2))(2( CBCAODCBOMCBCAODOM  CBODCBOMBACBODCBOM  .22)2(.2 0)(2  CBODOM 0,5 0,5 0,5 0,5 Câu 4(4 điểm) 1(2 điểm) Khi m=4 ta có HPT        4)]1()1[( 10)1()1( 2 22 yx yx đặt 1;1  ybxa ta được                    3 2 2 4)( 10 2 22 ab ba ba ba ba (*) 0,5 0.5            3 2 3 2 ab ba v ab ba   )1;3(),3;1(),1;3(),3;1();(  ba Từ đó ra các nghiệm của hệ ban đầu : (2;-2), (-2;2),(0;4),(4;0) (Lưu ý : nếu thí sinh thay m vào luôn HPT thì câu a vẫn tính 2 điểm ) 0.5 0,5 1(2 điểm) HPT        4)]1()1[( 22)1()1( 2 22 yx myx đặt 1;1  ybxa ta được                    mab ba ba ba mba 1 2 2 4)( 22 2 22 (*) ĐK cần :Ta có hệ ban đầu có nghiệm  hệ (*) có nghiệm; Số nghiệm của hệ đầu cũng là số nghiệm của (*). Nếu );( 00 ba là nghiệm của (*) ( dễ thấy 00 ba  ) thì );( 00 ab , );( 00 ba  , );( 00 ab  do đó để hệ có đúng 2 nghiệm phân biệt thì : ba  Thay vào (*) ta được 0m ĐK đủ :với 0m dễ dàng kiểm tra thấy thỏa mãn 0.5 1 0.5 Câu 5(2 điểm) Từ giả thiết 133 3 222  abccbacabcab Nên ta có :       22 1 1 1 1 1 a b c abc a b c a ab bc ca 3a          Tương tự     22 1 1 1 1 ; 1 b c a 3b 1 c a b 3c      Cộng vế với vế các BĐT ta được điều phải CM Dấu bằng xảy ra  1 cba 0,5 0.5 0,5 0,5 . 1. ĐỀ THI ĐỀ XUẤT NĂM HỌC 2012 -2 013 2. KỲ THI CHỌN HỌC SINH GIỎI LỚP 10 THPT 3. ĐƠN VỊ: TRƯỜNG THPT NGUYỄN HỮU TIẾN Câu 1 .( 4 điểm. 0.5 4,0  mm thỏa mãn điều kiện. Vậy với 0m hoặc 4m thỏa mãn yêu cầu bài toán 0.25 2(2 điểm) Th1. 101  mm x 0 1 y 1 2 m để hàm số (1) có giá trị nhỏ. 0.25 0.25 Kết Luận: Vậy 2m hoặc 2 3 m thỏa mãn yêu cầu bài toán 0.5 Câu 2(4 điểm) 1(2 điểm) 200326 7108 168 22  xxxx 2003)211()5()220()4( 2222  xx 0.5 Trong

Ngày đăng: 02/05/2014, 17:28

TỪ KHÓA LIÊN QUAN

w