Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(20; 15; 7) C C(8; ; 19) D C(6; 21; 21) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m > C m < D m ≥ Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = tan x B y = x−1 C y = sin x D y = x3 − 2x2 + 3x + Câu √Cho hai√ số thực a, bthỏa mãn√ a > b > Kết luận sau sai? √ √ √ B a < b A a− < b− C ea > eb D a > b Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (−2; −3; −1) Câu Cho hình S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: √ chóp 3ab 3a2 b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 D VS ABC = C VS ABC = 12 12 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π A V = B V = C V = π D V = 3 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > 2e C m > D m ≥ e−2 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A R Câu 10 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C − sin 3x + C D sin 3x + C 3 ′′ Câu 11 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −3 C f (−1) = −5 D f (−1) = −1 Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Trang 1/5 Mã đề 001 Câu 13 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 4π D 2π R5 dx = ln T Giá trị T là: Câu 14 Biết 2x − √ A T = B T = 81 C T = D T = Câu 15 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A (m2 ) B 3(m2 ) C (m2 ) D (m ) Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 2; 3) Câu 17 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = 2ki D A = Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực D Mô-đun số phức z số thực không âm Câu 19 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 20 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = + 2i + i2017 có tổng phần thực phần ảo 2−i A B -1 C D 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 21 Số phức z = Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = 2i D P = Câu 24 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = −21009 i Câu 25 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ = 6z − 25i √ mơ-đun số phức w A 13 B C 29 D Câu 26 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 A 3a B C 3a D 6a √ Câu 27 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A B a C D Trang 2/5 Mã đề 001 Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: B loga = a loga a = A loga xn = log x , (x > 0, n , 0) an C loga x có nghĩa với ∀x ∈ R D loga (xy) = loga x.loga y (2 ln x + 3)3 Câu 29 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3) ln x + (2 ln x + 3)4 (2 ln x + 3)4 A + C B + C C + C D + C 8 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 31 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2)2 = 24 C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x − 1)2 + (y + 1)2 + (z + 2)2 = Câu 32 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √h √ √ √ 2π − 3 π− 2π − A B C D 12 12 Câu 33 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b B √ D √ A √ C √ 3π 3π 2π 2π Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = D P = 34 + A P = 26 Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A |z| > B ≤ |z| ≤ C |z| < D < |z| < 2 2 Câu 37 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 2z − i Câu 38 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≥ C |A| ≤ D |A| < Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B C 10 D 15 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Trang 3/5 Mã đề 001 Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 Câu 43 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (1; 5) C (3; 5) D (−3; 0) Câu 44 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 D S = πRl + πR2 Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < − C m > D m > m < −1 A D = (−∞; −1] ∪ (1; +∞) 3x + x−1 B D = (−1; 4) C D = (−∞; 0) D D = (1; +∞) r Câu 46 Tìm tập xác định D hàm số y = log2 Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C 6π D 5 Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + m 2mn + n + C log2 2250 = n A log2 2250 = 2mn + n + n 3mn + n + D log2 2250 = n B log2 2250 = Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 11 17 21 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 50 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A B 128 C 64 x2 )=8 D 32 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001