Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ c[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m > C m ≥ D m ≤ Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π D 3π A 3π B √ C 3 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 2a 3a 5a A √ B √ C D 5 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = sin x 3x + C y = tan x D y = x−1 x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) A C(8; ; 19) Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B loga (x − 2)2 = 2loga (x − 2) C aloga x = x D loga x2 = 2loga x Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(1; 1; 2) D I(0; −1; 2) Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 11 Cho hình phẳng (H) giới hạn đường y = x ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 3 Trang 1/6 Mã đề 001 √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B (1; +∞) C (0; ) D ( ; +∞) 4 Câu 13 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể tích khối nón √ 4π 2.a3 π.a3 π 2.a3 2π.a3 A B C D 3 3 Câu 14 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + 2x2 + C y = −x4 + D y = x4 + Câu 15 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a B C a 15 A D 3 x Câu 17 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = C y = −1 D y = − R R R R 2 Câu 18 thức sau đúng? √ Bất đẳng √ √ √ e π π e A ( − 1) < ( − 1) B ( + 1) > ( + 1) C 3π < 2π D 3−e > 2−e Câu 19 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − 2 C y = x − 2x + D y = x3 − 2x2 + 3x + Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) Câu 21 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến R Câu 22 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a a 2a 5a A C √ D B √ 5 Câu 23 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (2; 3; 1) C M ′ (−2; 3; 1) D M ′ (−2; −3; −1) Câu 24 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3ab 3a b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 25 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C 4πR3 D πR3 Trang 2/6 Mã đề 001 Câu 26 Tập nghiệm bất phương trình log4 (3 x − 1).log 3x − ≤ là: 16 4 B S = (−∞; 1] ∪ [2; +∞) D S = (0; 1] ∪ [2; +∞) A S = (1; 2) C S = [1; 2] (2 ln x + 3)3 : x (2 ln x + 3)4 ln x + B + C C + C Câu 27 Họ nguyên hàm hàm số f (x) = (2 ln x + 3)4 + C (2 ln x + 3)2 + C x−3 y−6 z−1 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 = B = = A = −3 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −1 −3 −1 Câu 29 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 1 Câu 30 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m > C m > m < D m < A D Câu 31 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga (xy) = loga x.loga y C loga xn = log x , (x > 0, n , 0) D loga x có nghĩa với ∀x ∈ R an Câu 32 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 48.621.980 đồng C 43.091.358 đồng D 46.538667 đồng d Câu 34 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ B a C a D 2a A a Câu 35 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 4a3 C 6a3 D 9a3 A 3a3 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 → − → − Câu 37 Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ véc −u + 3→ −v tơ 2→ → − −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A u + 3→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Trang 3/6 Mã đề 001 Câu 38 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y x y C Nếu a > a > a ⇔ x < y D Nếu a < a x > ay ⇔ x < y Câu 39 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 40 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C 6π D 5 Câu 41 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln ′ x+cos3x C y = (1 − sin 3x)5 ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 42 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 10π C 8π D 12π Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 C 12a3 D 6a3 Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m < −2 C m > D m > m < − Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cách hai đường thẳng √ √ cạnh AB, AD Tính khoảng √ 3a 3a 30 3a a 15 B C D A 2 10 x2 + mx + Câu 46 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = C Khơng có m D m = −1 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ → − → − → − → C u + v = (1; 14; 15) D u + 3−v = (2; 14; 14) Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = D m = m = −16 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = −2 C m = D m = cos x π Câu 50 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A B ln + C ln + D ln + 5 5 Trang 4/6 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/6 Mã đề 001