Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 4 B 0 C 2 D 1 Câu 2 Hà[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Hàm số sau khơng có cực trị? A y = cos x B y = x4 + 3x2 + C y = x − 6x + 12x − D y = x2 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) m+1 m+2 2m + D I = ln( 2m + ) m+2 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường elip D Đường hypebol Câu Tính I = R1 √3 7x + 1dx A I = 45 28 B I = 20 C I = 21 D I = 60 28 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu Đạo hàm hàm số y = log √2 3x − là: 6 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 10 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 2; 3) C A(1; 2; 0) D A(0; 0; 3) Câu 11 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C π D 4π Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(1; 1; 2) Trang 1/5 Mã đề 001 Câu 13 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 2.a2 π 3.a2 2π 2.a2 B C D A π 3.a 3 Câu 14 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 4m2 − m2 − 12 m2 − 12 B C D A m 2m 2m 2m Câu 15 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B C √ sin 2x Câu 16 Giá trị lớn hàm số y = ( π) R bằng? A B C π D π D √ π Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = − i C z = + i D z = −3 − i 2(1 + 2i) Câu 18 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C −9 D 10 25 1 Câu 20 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B 17 C 31 D −31 (1 + i)(2 − i) Câu 21 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −21008 C −22016 D 21008 Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 10i C −3 − 2i D 11 + 2i Câu 25 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực phần ảo 2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 Câu 26 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m > m < B m > C m < x − (m − 2)x2 + (m − 2)x + m2 có 3 D m > Câu 27 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 4 R R R Câu 28 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A B 18 −1 C D −2 Trang 2/5 Mã đề 001 Câu 29 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D x−3 y−6 z−1 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vuông góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 = B = = A = −3 −1 −3 x y−1 z−1 x−1 y z−1 C = = D = = −1 −1 −3 Câu 31 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = (−1; +∞) C S = [−1; +∞) D S = (−4; −1) √3 a2 b Câu 32 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 x −2x +3x+1 Mệnh đề đúng? Câu 33 Cho hàm số f (x) = e A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c 2 C a + b + c − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D z+1 Câu 38 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2 Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = z Câu 40 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 Trang 3/5 Mã đề 001 √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? A |z| > B Câu 42 Cho số phức z thỏa mãn z + A B C |z| < ≤ |z| ≤ 2 √ 13 D < |z| < 2 = Tổng giá trị lớn nhỏ |z| z √ C D √ Câu 43 Tính đạo hàm hàm số y = log4 x2 − A y′ = x (x2 − 1) ln B y′ = √ x2 − ln C y′ = x (x2 − 1)log4 e D y′ = x 2(x2 − 1) ln d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 47 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 + √ 2x − x2 + có số đường tiệm cận đứng là: Câu 48 Đồ thị hàm số y = x2 − A B C D y = x3 − 3x2 D Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m < −2 C m > D m > m < −1 Câu 50 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x4 + 3x2 C y = x3 + 3x2 + 6x − D y = 4x + x+2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001