Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A πR3[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C 4πR3 D πR3 A πR3 B πR3 Câu Hàm số sau khơng có cực trị? A y = cos x B y = x4 + 3x2 + C y = x D y = x3 − 6x2 + 12x − Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? C loga x > loga y A ln x > ln y B log x > log y D log x > log y a a ′ ′ ′ Câu Cho hình hộp ABCD.A B C D có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 20a3 C 60a3 D 100a3 ′ Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; 5; 0) D (0; −5; 0) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m < C m > D m ≥ p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < π y > − 4π2 C Nếux > thìy < −15 D Nếu < x < y < −3 Câu 8.√ Bất đẳng thức √ πsau đúng? e A ( √3 − 1) < ( √3 − 1) π e C ( + 1) > ( + 1) B 3π < 2π D 3−e > 2−e Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x − 2y − = C (P) : x + y + 2z = D (P) : x − y − 2z = Câu 10 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , −1 C m , D m = Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − m2 − 12 A B C D 2m m 2m 2m Câu 12 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Trang 1/5 Mã đề 001 Câu 13 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m > D m ≥ 1 ; y = 0; x = 0; x = Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B − ln − C ln + D ln − 2 2 Câu 15 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C −1 D Câu 16 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số đồng biến khoảng (−3; 1) Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = D A = 2k Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) B z = − i C z = + i A z = −3 − i D z = −3 + i Câu 20 Tính √ mô-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 B |z| = 34 C |z| = 34 A |z| = √ 34 D |z| = √ Câu 21 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C ≤ m ≤ D m ≥ m ≤ Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 23 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực phần ảo 2i Câu 24 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mô-đun số phức w C 13 D A B 29 Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 26 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S A 50 5dm2 B 75dm2 C 125dm2 D 106, 25dm2 Câu 27 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu Trang 2/5 Mã đề 001 4a2 b A √ 3π 4a2 b B √ 2π 2a2 b D √ 2π y−6 z−1 x−3 = = Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −3 −3 y−1 z−1 x−1 y z−1 x = = D = = C −1 −1 −3 Câu 29 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D √3 a2 b Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 1 Câu 31 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) 4k(k + 1) B M = C M = D M = A M = loga x loga x 2loga x 3loga x 2a2 b C √ 3π Câu 32 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5π 5 A V = πa B V = C V = a D V = πa 6 2x − Câu 33 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±3 C m = ±1 D m = ±2 + z + z2 Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B Phần thực z số âm C |z| = D z số thực không dương Câu 38 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 10 C 15 D Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A B C z số thực Giá trị lớn + z2 √ D 2 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = D m = m = −16 Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ a 15 3a 3a 3a 30 A B C D 10 2 Câu 46 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C D 6π 5 Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + C R3 |x − 2x|dx = − D R3 R3 (x2 − 2x)dx R2 (x − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 6a3 B 3a3 C 9a3 D 4a3 Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 A B C D Trang 4/5 Mã đề 001 R ax + b 2x Câu 50 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001