Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < π y > − 4π D Nếu < x < y < −3 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π C V = D V = A V = π B V = 3 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C πR3 D 2πR3 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C loga x > loga y a D log x > log y a Rm dx theo m? x + 3x + 2m + m+2 m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x + B y = +1− A y = ln 5 ln ln x x C y = −1+ D y = − ln ln 5 ln ln Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 450 C 300 D 600 Câu Cho số thực dươngm Tính I = Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga2 x = loga x C loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ tiếp √ √ 2π 2.a π 3.a2 π 2.a2 A B C π 3.a D 3 √ Câu 10 Cho a > a , Giá trị alog a bằng? √ A B C D √ sin 2x Câu 11 R bằng? √ Giá trị lớn hàm số y = ( π) A π B π C D Câu 12 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = 52 Câu 13 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = 81 D yCD = −2 D T = Trang 1/5 Mã đề 001 Câu 14 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + 2x2 + C y = x4 + D y = −x4 + 2x2 + Câu 15 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b) D ln(ab2 ) = ln a + ln b √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A a 15 B C D 3 Câu 17 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = −x + 3x − D y = x2 − 2x + Câu 18 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 19 Cho hàm số y = cx + d A bc > B ad > C ab < D ac < → − Câu 20 Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ Câu 21 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (2; −3; −1) D M ′ (−2; 3; 1) Câu 22 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 5a 3a 2a A √ B C D √ 5 Câu 23 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu 24 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 1; 0) D (0; 5; 0) m R dx theo m? Câu 25 Cho số thực dươngm Tính I = x + 3x + m+1 m+2 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 m+1 2m + Câu 26 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = (−∞; −4) ∪ (−1; +∞) C S = [−1; +∞) D S = (−1; +∞) Câu 27 Cho hàm số y = x −3x Tính y′ A y′ = x −3x ln C y′ = (2x − 3)5 x −3x ln B y′ = (2x − 3)5 x −3x D y′ = (x2 − 3x)5 x −3x ln Câu 28 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng Trang 2/5 Mã đề 001 √ √ 3a 10 A 6a B 3a C D 3a Câu 29 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 30 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = x4 − 2x2 − C y = x4 + 2x2 − D y = 2x4 + 4x2 + (2 ln x + 3)3 Câu 31 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3) (2 ln x + 3) ln x + (2 ln x + 3)4 A + C B + C C + C D + C 8 2x − Câu 32 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±3 C m = ±1 D m = ±2 x2 + 2x Câu 33 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ B C 15 D −2 A Câu 34 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC a3 a3 15 a 15 a3 15 A B C D 16 Câu 35 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 36 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ πa2 17 πa2 17 πa2 17 πa2 15 A B C D Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 21 11 17 10 16 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 38 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 400π 500π 250π 125π A B C D 9 Câu 39 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − x x x ′ ′ ′ A y′ = B y = C y = D y = √ 2(x2 − 1) ln (x2 − 1)log4 e (x2 − 1) ln x2 − ln Câu 41 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 2a+2b+3c D P = 26abc Trang 3/5 Mã đề 001 Câu 42 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A sin xdx = cos x + C B (2x + 1)2 dx = +C R R e2x C x dx =5 x + C D e2x dx = + C Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 44 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 45 Tìm tất giá trị tham số m để hàm số y = A m = B Khơng có m Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vuông góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 47 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 125π 500π A B C D 9 Câu 48 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình tròn nội tiếp tứ giác ABCD √ √ √ √ πa2 15 πa2 17 πa2 17 πa2 17 A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong khơng gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001