1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (922)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 122,24 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(20; 15; 7) C C(6; 21; 21) D C(8; ; 19) x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 C y = D y = − A y = −1 B y = R R R R 2 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Kết đúng? R R sin3 x + C A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = R R sin3 x C sin2 x cos x = −cos2 x sin x + C D sin2 x cos x = − + C Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = [ 0; +∞) C S = (−∞; 2) D S = (−∞; ln3) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (−2; 1; 2) C (2; −1; 2) D (2; −1; −2) Câu Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π √ √ e π B ( √3 − 1) < ( √3 − 1) π e D ( + 1) > ( + 1) √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a 15 a A a 15 B C D 3 Câu 10 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ Câu 11 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B (1; +∞) C (0; ) D ( ; +∞) 4 Câu 12 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + C y = x4 + D y = −x4 + 2x2 + Trang 1/5 Mã đề 001 Câu 13 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C −1 Câu 14 Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = −2 B yCD = 52 C yCD = √ x Câu 15 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D π D yCD = 36 D x = −1 Câu 16 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 17 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m > C m > 2e D m ≥ e−2 R1 √3 Câu 18 Tính I = 7x + 1dx 45 20 60 21 B I = C I = D I = A I = 28 28 Câu 19 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 5; 0) D (0; 1; 0) Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (−2; −1; 2) C (2; −1; 2) D (2; −1; −2) Câu 21 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C 2πR3 D πR3 Câu 22 √ Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A π l − R B 2πRl C 2π l2 − R2 D πRl Câu 23 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = sin x D y = tan x Câu 24 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B m < C −4 < m < Câu 25 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − B y = x4 + 3x2 + C y = cos x D y = x2 + 2x x+1 D ∀m ∈ R Câu 26 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 4a2 b 2a2 b A √ B √ C √ D √ 3π 3π 2π 2π 2x − Câu 27 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±1 B m = ±3 C m = ± D m = ±2 Trang 2/5 Mã đề 001 Câu 28 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ π− 2π − 3 2π − 3 A B C D 12 12 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 30 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ sin góc MN và√mặt phẳng (S BD) √ (ABCD) 60 Tính 10 B C D A 5 Câu 31 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 12π(dm3 ) C 6π(dm3 ) D 54π(dm3 ) Câu 32 Cho R4 f (x)dx = 10 −1 A −2 R4 B f (x)dx = Tính R1 f (x)dx −1 C 18 Câu 33 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D D Câu 34 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 35 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = √ Câu 36 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ [ 1; 3] Câu 37 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 15 C R = D R = 14 Câu 38 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 e2x A (2x + 1)2 dx = +C B e2x dx = + C R R C sin xdx = cos x + C D x dx =5 x + C Câu 39 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (1; 5) C (3; 5) D (−3; 0) Trang 3/5 Mã đề 001 Câu 40 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C D 6π 5 Câu 41 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A 2 Câu 42 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 125π 250π 400π A B C D 9 Câu 43 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = −x3 − x2 − 5x 4x + C y = x3 + 3x2 + 6x − D y = x+2 √ Câu 44 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình vơ nghiệm D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) d Câu 45 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 B C D A 16 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 48 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 49 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 32 B 128 C 64 x2 )=8 D Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:05

w