Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
468,36 KB
Nội dung
115bàitoán về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ CÁC ĐỀ THI THỬ ĐẠI HỌC LIÊN QUAN TỚI: SỰ BI ẾN THIÊN & CỰC TR Ị 1.Câu I: (2 điểm) Cho hàm số 4 2 2 ( ) 2( 2) 5 5 f x x m x m m ; (C m ) 1) Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số với m = 1 2) Tìm m để (C m ) có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. 2.Câu I (2 điểm) Cho hàm số y = x 3 + (1 – 2m)x 2 + (2 – m)x + m + 2 (m là tham số) (1) 1) Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. 3.Câu I (2 điểm). Cho hàm số 32 3 y x x m (1) 1) Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi m = 4. 2) Tìm m để đồ thị hàm số (1) có hai điểm cựctrị A, B sao cho 0 120 .AOB 4.Câu I: (2 điểm) Cho hàm số : 32 (1 2 ) (2 ) 2 y x m x m x m (1) ( m là tham số). 1) Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. 5.Câu I (2 điểm) Cho hàm số 4 2 2 2y x mx m m (1). 1) Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số khi m = –2. 2) Tìm m để đồ thị hàm số (1) có 3 điểm cựctrị lập thành một tam giác có một góc bằng 0 120 . 6.Câu I. (2,0 điểm) Cho hàm số : 3 2 3 31 22 y x mx m 1) Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số với m = 1. 2) Xác định m để đồ thị hàm số có các điểm cực đại, cực tiểu đối xứng với nhau qua đường thẳng y = x. 7.Câu I: (2 điểm) Cho hàm số 4 3 2 2 3 1 (1) y x mx x mx . 1) Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi m = 0. 2) Định m để hàm số (1) có hai cực tiểu. 8.Câu I (2 điểm): Cho hàm số y x m m x m 4 2 2 2( 1) 1 (1) 1) Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số khi m = 1. 2) Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất. 9.Câu I (2 điểm): Cho hàm số y x mx m x 3 2 2 2 9 12 1 (m là tham số). 1) Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số khi m = –1. 2) Tìm tất cả các giá trị của m để hàm số có cực đại tại x CĐ , cực tiểu tại x CT thỏa mãn: CÑ CT xx 2 . 10.Câu 1: ( 2điểm) Cho hàm số y = 4x 3 + mx 2 – 3x 1. Khảo sát vàvẽ đồ thị (C) hàm số khi m = 0. 2. Tìm m để hàm số có hai cựctrị tại x 1 và x 2 thỏa x 1 = - 4x 2 11.Câu I (2 điểm) Cho hàm số 32 ( ) 3 1 1y f x mx mx m x , m là tham số 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số ()y f x không có cực trị. 12.Câu I: Cho hàm số 4 3 2 x 2x 3 x 1 (1)y x m m . 1). Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi m = 0. 2). Định m để hàm số (1) có hai cực tiểu. 13.Câu I (2,0 điểm) Cho hàm số ( ) ( ) 32 1 y m 1 x mx 3m 2 x 3 = - + + - (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi m2= 115bài tốn về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 2. Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó. 14.Câu I: (2 điểm) Cho hàm số: 32 3 1 9 2y x m x x m (1) có đồ thị là (C m ) 1) Khảo sát vàvẽ đồ thị hàm số (1) với m =1. 2) Xác định m để (C m ) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua đường thẳng 1 2 yx . 15.Câu I: Cho hàm số y = x 3 + mx + 2 (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = -3. 2. Tìm m để đồ thị hàm số (1) cắt trục hòanh tại một điểm duy nhất. 16.Câu I Cho hàm số : 323 m 2 1 mx 2 3 xy 1/ Khảo sát vàvẽ đồ thị hàm số khi m=1. 2/ Xác định m để đồ thị hàm số có cực đại, cực tiểu đối xứng nhau qua đt y = x 17.Câu I Cho hàm số: 2 2 3 ( 1) 4mx m x m m y xm () m C 1.Khảo sát sựbiếnthiênvàvẽ đồ thò của hàm số khi m= -1 2.Tìm các giá trò của tham số m để đồ thò () m C có 1 điểm cực trò thuộc góc phần tư thứ (II) và 1 điểm cực trò thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ 18.Câu I. (2.0 điểm) Cho hàm số y = x x-1 (C) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. 19.Câu I. (2,0 điểm)Cho hàm số y = x 3 3x 2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ). 20.Câu I. (2 điểm) Cho hàm số y = x 3 3x 2 + mx + 4, trong đó m là tham số thực. 3. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số đã cho, với m = 0. 4. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ). 21.Câu I. (2,0 điểm) Cho hàm số mxxmxy 9)1(3 23 , với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số đã cho ứng với 1m . 2. Xác định m để hàm số đã cho đạt cựctrị tại 21 , xx sao cho 2 21 xx . 22.Câu I (2 điểm): Cho hàm số y = x 3 – 3(m+1)x 2 + 9x – m (1), m là tham số thực 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 1. 2. Xác định các giá trị m để hàm số (1) nghịch biến trên một khoảng có độ dài bằng 2. 23.Câu I (2 điểm) Cho hàm số y = x 3 + (1 – 2m)x 2 + (2 – m)x + m + 2 (m là tham số) (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 2 2. Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hồnh độ của điểm cực tiểu nhỏ hơn 1. 24.Câu I (2 điểm): Cho hàm số y = 1 3 x 3 – mx 2 +(m 2 – 1)x + 1 ( có đồ thị (C m ) ) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số khi m = 2. 2. Tìm m, để hàm số (C m ) có cực đại, cực tiểu và y CĐ + y CT > 2 . 115bàitoán về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 25.Câu I (2 điểm): Cho hàm số : y = (x – m) 3 – 3x (1) 1. Xác định m để hàm số (1) đạt cực tiểu tại điểm có hoành độ x = 0. 2. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi m = 1. 26.Câu I. (2 điểm) Cho hàm số 42 21y x mx m (1) , với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi 1m . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cựctrị của đồ thị tạo thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1 . 27.Câu I. (2 điểm) Cho hàm số y = –x 3 + 3x 2 + mx – 2 (1), m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số khi m = 0. 2. Tìm các giá trị của m để hàm số (1) nghịch biến trên khoảng (0; 2). 28.Câu I (2 điểm) Cho hàm số y = 2x 3 – 3(2m + 1)x 2 + 6m(m + 1)x +1 có đồ thị (C m ). 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ;2 29.Câu I.(2đ) Cho hàm số 42 1 3 5y m x mx 1.Khảo sát với m=2 2.Tìm m để hàm số có cực đại mà không có cực tiểu. 30.Câu I ( 2,0điểm) Cho hàm số 4 2 2 2 2 5 5y f x x m x m m 1/ Khảo sát sựbiếnthiênvàvẽ đồ thị (C ) hàm số với m = 1 2/ Tìm các giá trị của m để đồ thị hàm số có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. 31.Câu I: (2 điểm) Cho hàm số: 32 y x 3 m 1 x 9x m 2 (1) có đồ thị là (C m ) 1) Khảo sát vàvẽ đồ thị hàm số (1) với m=1. 1) Xác định m để (C m ) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua đường thẳng 1 2 yx . 32.Câu I:(2,0 điểm) Cho hàm số 3 (3 1)y x x m (C ) với m là tham số. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (C) khi 1m . 2. Tìm các gíá trị của m để đồ thị của hàm số (C) có hai điểm cựctrịvà chứng tỏ rằng hai điểm cựctrị này ở về hai phía của trục tung. 33.Câu 1: Cho hàm số 7)1(2)1( 24 mxmxmy 1) Định m để hàm số chỉ có cực đại mà không có cực tiểu 2) a) Khảo sát vàvẽ đồ thị (C) hàm số khi m=0 b) Dùng (C), biện luận theo tham số a số nghiệm của phương trình: 0 44 12 8) 44 12 ( 2 2 2 2 2 a xx xx xx xx 34.Câu 1: Cho hàm số: mx mmxmmx y 24)2( 222 1) Tìm các giá trị của m để đồ thị hàm tương ứng có 1 điểm cựctrị thuộc góc phần tư thứ (II) và 1 điểm cựctrị thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ. 2) Khảo sát vàvẽ đồ thị (C) của hàm số khi m=-1. Dùng (C), biện luận theo a số nghiệm thuộc ]3;0[ của phương trình: 04cos)1(cos 2 mxmx 35.Câu 1: Cho hàm số mxmxmy 2)1(3)1( 3 (C m ) 1) Chứng minh họ đồ thị (C m ) có 3 điểm cố định thẳng hàng 2) Khảo sát hàm số khi m=1 3) Tìm phương trình parabol (P) qua điểm cực đại, cực tiểu của (C) và tiếp xúc với y=4x+9 115bàitoán về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 36.Câu 1: Cho hàm số 323 43 aaxxy (a là tham số) có đồ thị là (C a ) 1) Xác định a để (C a ) có các điểm cực đại vàcực tiểu đối xứng nhau qua đừơng thẳng y=x 2) Gọi (C’ a ) là đừơng con đối xứng (C a ) qua đừơng thẳng: x=1. Tìm phương trình của (C’ a ). Xác định a để hệ số góc lớn nhất của tiếp tuyến của (C’ a ) là 12 37.Câu I: (2 điểm). Cho hàm số y = - x 3 + 3mx 2 -3m – 1. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số khi m = 1. 2. Tìm các giá trị của m để hàm số có cực đại, cực tiểu. Với giá trị nào của m thì đồ thị hàm số có điểm cực đại, điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0. 38.Câu I (2 điểm) Cho hàm số 32 2 3(2 1) 6 ( 1) 1y x m x m m x có đồ thị (C m ). 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ;2 39.Câu I : ( 2 điểm ). Cho hàm số y = x 3 + ( 1 – 2m)x 2 + (2 – m )x + m + 2 . (C m ) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số khi m = 2. 2. Tìm m để đồ thị hàm số (C m ) có cựctrị đồng thời hoành độ cực tiểu nhỏ hơn 1. 40.Câu I. (2,0 điểm) Cho hàm số y = x 3 3x 2 + mx + 4, trong đó m là tham số thực. 5. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số đã cho, với m = 0. 6. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ). 41.Câu I (2 điểm) Cho hàm số 42 21y x mx m (1) , với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi 1m . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cựctrị của đồ thị tạo thành một tam giác có diện tích bằng 42 . 42.Câu I (2 điểm) Cho hàm số 3 31y x x (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1). 2. Đường thẳng ( ): 1y mx cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để ADB là góc vuông. 43.Câu I (2,0 điểm) Cho hàm số 4 2 2 y x 2m x 1 (1), trong đó m là tham số thực. 7. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 1. 8. Tìm giá trị của tham số m để hàm số (1) có ba điểm cựctrị là ba đỉnh của một tam giác có diện tích bằng 32. 44.Câu I (2 điểm) Cho hàm số 4 2 2 2y x mx m m (1) , với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi 2m . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cựctrị của đồ thị tạo thành một tam giác có góc bằng 120 0 . 45.Câu I (2 điểm) Cho hàm số 42 2y x mx (1), với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi 1m . 2. Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số với đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1. 46.Câu I (2 điểm) Cho hàm số 32 1 23 3 y x x x (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) . 2. Gọi A, B lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M thuộc trục hoành sao cho tam giác MAB có diện tích bằng 2. 47.Câu I (2 điểm) 115 bi toỏn v: S bin thiờn v cc tr - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ Cho hm s 3 2 2 2 3 3 1 3 1y x x m x m (1), vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi 1m . 2. Tỡm m hm s (1) cú cc i v cc tiu, ng thi cỏc im cc tr ca th cựng vi gc to O to thnh mt tam giỏc vuụng ti O. 48.Cõu I (2 im) Cho hm s 23 23 mxxxy (1) vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 0. 2. nh m hm s (1) cú cc tr, ng thi ng thng i qua hai im cc tr ca th hm s to vi hai trc ta mt tam giỏc cõn. 49.Cõu I (2 im) Cho hm s mmmxxy 224 22 (1) vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 1. 2 nh m th ca hm s (1) cú ba im cc tr l ba nh ca mt tam giỏc vuụng. 50.Cõu 1. ( 2,0 im ) Cho hm s y = x 3 + 2(m 1)x 2 +(m 2 4m + 1)x 2(m 2 + 1) (1). 1. Kho sỏt s bin thiờn v v th (C) ca hm s khi m = 0. 2. Tỡm cỏc giỏ tr ca m hm s cú cc i, cc tiu v ng thng i qua cỏc im cc i, cc tiu ca th hm s (1) vuụng gúc vi ng thng 5 2 9 xy . 51.Cõu 1: ( 2,0 im)Cho hm s 32 2( 1) 9 2y x m x x m (1) 1) Vi 4m . Kho sỏt s bin thiờn v v th hm s. 2) Tỡm m ()m hm s (1) t cc tr ti 12 ,xx tho món 12 2.xx 52.Câu I: (2 im) Cho h m s mxmmxmxxf 2)2(3)1(3 23 (1) (m là tham số) 1. Kho sát s bin thiên v v đồ th h m s (1) khi 2m . 2. Tìm m để đồ th h m s (1) có cựctrị đồng thời khoảng cách từ điểm cực đại của th h m s (1) tới trục Ox bằng khoảng cách từ điểm cực tiểu của th h m s (1) tới trục Oy . 53.Cõu I (2 im) Cho hm s y x 3 3x 2 3m(m 2) x 1 (1) , vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi m=0. 2. Tỡm cỏc giỏ tr ca m hm s (1) cú hai giỏ tr cc tr cựng du. 54.Cõu I (2 im) Cho hm s 3 32 m y x mx C 1. Kho sỏt s bin thiờn v v th ca hm s 1 C 2. Tỡm m ng thng i qua im cc i, cc tiu ca m C ct ng trũn tõm 1;1 ,I bỏn kớnh bng 1 ti hai im phõn bit A, B sao cho din tớch tam giỏc IAB t giỏ tr ln nht 55.Cõu I: ( 2,0 im ) Cho hm s 1mx2xy 24 (1). 1/.Kho sỏt s bin thiờn v v th (C) ca hm s (1) khi 1m . 2/.Tỡm cỏc giỏ tr ca tham s m th hm s (1) cú ba im cc tr v ng trũn i qua ba im ny cú bỏn kớnh bng 1. 56.Cõu I:(2.0 im). Cho hm s 4 2 2 2(1 ) 1y x m x m (1) 1. Kho sỏt s bin thiờn v v th hm s (1) vi m = 0. 2. Tỡm m hm s cú i cc, cc tiu v cỏc im cc tr ca th hm s lp thnh tam giỏc cú din tớch ln nht. 57.Cõu I (2,0 im) Cho hm s y = x 4 2x 2 + 2 (1) 1. Kho sỏt s bin thiờn v v th (C) ca hm s (1). 2. Tỡm ta hai im A, B thuc (C) sao cho ng thng AB song song vi trc honh v khong cỏch t im cc i ca (C) n AB bng 8. 115bài tốn về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 58.Câu I (2 điểm) Cho hàm số 42 21y x mx m (1) , với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi 1m . 2. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cựctrị của đồ thị tạo thành một tam giác có diện tích bằng 42 . 59.Câu I (2 điểm) Cho hàm số 3 31y x x (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1). 2. Đường thẳng ( ): 1y mx cắt (C) tại ba điểm. Gọi A và B là hai điểm có hồnh độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để ADB là góc vng. 60.Câu I (2 điểm) Cho hàm số 42 2y x mx (1), với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi 1m . 2. Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số với đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1. 61.Câu I (2 điểm) Cho hàm số 32 1 23 3 y x x x (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) . 2. Gọi A, B lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M thuộc trục hồnh sao cho tam giác MAB có diện tích bằng 2. 62.Câu I (2 điểm) Cho hàm số 3 2 2 2 3 3 1 3 1y x x m x m (1), với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi 1m . 2. Tìm m để hàm số (1) có cực đại vàcực tiểu, đồng thời các điểm cựctrị của đồ thị cùng với gốc toạ độ O tạo thành một tam giác vng tại O. 63.Câu I (2 điểm) Cho hàm số 23 23 mxxxy (1) với m là tham số thực. 1.Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 0. 2.Định m để hàm số (1) có cực trị, đồng thời đường thẳng đi qua hai điểm cựctrị của đồ thị hàm số tạo với hai trục tọa độ một tam giác cân. 64.Câu I (2,0 điểm) Cho hàm số 42 4 1 2 1y x m x m có đồ thị m C 1. Khảo sát sựbiếnthiênvàvẽ đồ thị C của hàm số khi 3 2 m . 2. Xác định tham số m để hàm số có 3 cựctrị tạo thành 3 đỉnh của một tam giác đều 65.Câu I: (2,0 điểm) Cho hàm số y = x 4 – 2(m 2 – m + 1)x 2 + m – 1 (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi m = 1 2. Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất. 66.Câu I (2.0 điểm). Cho hàm số: y = f(x) = x 3 – 3mx 2 + 3(m 2 – 1)x – m 3 (C m ) 1. Khảo sát sựbiếnthiênvàvẽ đồ thò của hàm số khi m = –2. 2. Chứng minh rằng (C m ) ln có điểm cực đại và điểm cực tiểu lần lượt chạy trên mỗi đường thẳng cố định 67.Câu I. (2 điểm) Cho hàm số 32 32y x x C 1.Khảo sát sựbiếnthiênvàvẽ đồ thị C của hàm số 2.Tìm m để đường thẳng đi qua hai điểm cựctrị của C tiếp xúc với đường tròn có phương trình 22 15x m y m 68.Câu I.(2 điểm) Cho hàm số y = 3 2 1 ( 3) 2( 1) 1 (1) 32 x m x m x ( m là tham số thực) 1) Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi m = 1 . 2) Tìm tất cả các giá trị của m để đồ thị hàm số (1) có hai điểm cựctrị với hồnh độ lớn hơn 1. 115bàitoán về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 69.Câu I (2 điểm) Cho hàm số 32 ( ) 3 1 1y f x mx mx m x , m là tham số 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số ()y f x không có cực trị. 70.Câu I (2 điểm): Cho hàm số 3 2 2 3 3 3( 1)y x mx m x m m (1) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cựctrị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. 71.Câu I : ( 2 điểm ). Cho hàm số y = x 3 + ( 1 – 2m)x 2 + (2 – m )x + m + 2 . (C m ) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số khi m = 2. 2. Tìm m để đồ thị hàm số (C m ) có cựctrị đồng thời hoành độ cực tiểu nhỏ hơn 1. 72.Câu I ( 2,0 điểm) Cho hàm số mxmxxy 296 23 (1), với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 1. 2. Tìm m để đồ thị hàm số (1) có hai điểm cựctrị thoả mãn khoảng cách từ gốc toạ độ O đến đường thẳng đi qua hai điểm cựctrị bằng 5 4 . 73.Câu I ( 2,0 điểm ) Cho hàm số 3 2 2 y x 3x m m 1 (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 1. 2. Tìm m để đồ thị hàm số (1) có hai điểm cực đại , cực tiểu là A và B sao cho diện tích tam giác ABC bằng 7, với điểm C( – 2; 4 ). 74.Câu I (2 điểm) Cho hàm số 32 2 3(2 1) 6 ( 1) 1y x m x m m x có đồ thị (C m ). 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ;2 75.Câu I (2,0 điểm) Cho hàm số 2 m y x m x 1.Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số đã cho với m = 1. 2.Tìm m để hàm số có cực đại vàcực tiểu sao cho hai điểm cựctrị của đồ thị hàm số cách đường thẳng d: x – y + 2 = 0 những khoảng bằng nhau. 76.Câu I (2 điểm) Cho hàm số y = x 3 – 3x 2 +2 (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cựctrị nhỏ nhất. 77.Câu I: (2,0 điểm). Cho hàm số y = x 3 – 3mx 2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cựctrị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số trong trường hợp đó. 78.Câu I (2 điểm): Cho hàm số 3 2 2 3 3 3( 1)y x mx m x m m (1) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cựctrị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. 79.Câu I (2 điểm) Cho hàm số y = x 3 – 3x 2 +2 (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y=3x-2 sao tổng khoảng cách từ M tới hai điểm cựctrị nhỏ nhất. 80.Câu I (2,0 điểm) Cho hàm số 42 (3 1) 3y x m x (với m là tham số) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số với 1m . 2. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm cựctrị tạo thành một tam giác cân sao 115bàitoán về: Sựbiếnthiênvàcựctrị - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ cho độ dài cạnh đáy bằng 3 2 lần độ dài cạnh bên. 81.Câu I: (2,0 điểm) Cho hàm số y = x 4 – 2(m 2 – m + 1)x 2 + m – 1 (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi m = 1 2. Tìm m để đồ thị của hàm số (1) có khoảng cách giữa hai điểm cực tiểu ngắn nhất. 82.Câu I. (2,0 điểm) Cho hàm số mxxmxy 9)1(3 23 , với m là tham số thực. 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số đã cho ứng với 1m . 2. Xác định m để hàm số đã cho đạt cựctrị tại 21 , xx sao cho 2 21 xx . 83.Câu I (2 điểm)Cho hàm số y = 2)1(2 24 mxmx (1). 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi 2m . 2. Tìm m để hàm số (1) đồng biến trên khoảng ;1( )3 . 84.Câu I (2 điểm)Cho hàm số y = 2)1(2 24 mxmx (1). 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi 2m . 2. Tìm m để hàm số (1) đồng biến trên khoảng ;1( )3 . 85.Câu I :( 2, 0 điểm) Cho hàm số 32 y (m 2)x 3x mx 5 , m là tham số 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C ) của hàm số khi m = 0 2. Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hoành độ là các số dương. 86.Câu 1: ( 2 điểm) Cho hàm số m Cmmxmxy 55)2(2 224 1, Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số khi m = 1. 2, Với những giá trị nào của m thì đồ thị ( C m ) có điểm cực đại và điểm cực tiểu, đồng thời các điểm cực đại và điểm cực tiểu lập thành một tam giác đều. 87.Câu I (2 điểm) Cho hàm số 3 32 m y x mx C 3. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số 1 C Tìm m để đường thẳng đi qua điểm cực đại, cực tiểu của m C cắt đường tròn tâm 1;1 ,I bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất 88.Câu I: ( 2,0 điểm ) Cho hàm số 1mx2xy 24 (1). 1/.Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1) khi 1m . 2/.Tìm các giá trị của tham số m để đồ thị hàm số (1) có ba điểm cựctrịvà đường tròn đi qua ba điểm này có bán kính bằng 1. 89.Câu I:(2.0 điểm). Cho hàm số 4 2 2 2(1 ) 1y x m x m (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) với m = 0. 2. Tìm m để hàm số có đại cực, cực tiểu và các điểm cựctrị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất. 90.Câu I (2 điểm) Cho hàm số 3 31y x x (1) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị (C) của hàm số (1). 2. Đường thẳng ( ): 1y mx cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để ADB là góc vuông. 91.Câu I (2,0 điểm) Cho hàm số 4 2 2 y x 2m x 1 (1), trong đó m là tham số thực. 9. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 1. 10. Tìm giá trị của tham số m để hàm số (1) có ba điểm cựctrị là ba đỉnh của một tam giác có diện tích bằng 32. 115 bi toỏn v: S bin thiờn v cc tr - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 92.Cõu I (2 im) Cho hm s 4 2 2 2y x mx m m (1) , vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th hm s (1) khi 2m . 2. Xỏc nh m hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to thnh mt tam giỏc cú gúc bng 120 0 . 93.Cõu I (2 im) Cho hm s 42 2y x mx (1), vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi 1m . 2. Tỡm m th hm s (1) cú hai im cc tiu v hỡnh phng gii hn bi th hm s vi ng thng i qua hai im cc tiu y cú din tớch bng 1. 94.Cõu I (2 im) Cho hm s 32 1 23 3 y x x x (1) 1. Kho sỏt s bin thiờn v v th ca hm s (1) . 2. Gi A, B ln lt l cỏc im cc i, cc tiu ca th hm s (1). Tỡm im M thuc trc honh sao cho tam giỏc MAB cú din tớch bng 2. 95.Cõu I (2 im) Cho hm s 3 2 2 2 3 3 1 3 1y x x m x m (1), vi m l tham s thc. 1. Kho sỏt s bin thiờn v v th ca hm s (1) khi 1m . 2. Tỡm m hm s (1) cú cc i v cc tiu, ng thi cỏc im cc tr ca th cựng vi gc to O to thnh mt tam giỏc vuụng ti O. 96.Cõu I (2 im) Cho hm s 23 23 mxxxy (1) vi m l tham s thc. 3. Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 0. 4. nh m hm s (1) cú cc tr, ng thi ng thng i qua hai im cc tr ca th hm s to vi hai trc ta mt tam giỏc cõn. 97.Cõu I (2,0 im) Cho hm s 42 4 1 2 1y x m x m cú th m C 1. Kho sỏt s bin thiờn v v th C ca hm s khi 3 2 m . 2. Xỏc nh tham s m hm s cú 3 cc tr to thnh 3 nh ca mt tam giỏc u CC THI I HC LIấN QUAN TI BI N THIấN & CC TR 98.Cõu I (2,0 im) (CT -KB-11) Cho hm s 42 21y x (m )x m (1), m l tham s. 1. Kho sỏt s bin thiờn v v th hm s (1) khi m = 1. 2. Tỡm m th hm s (1) cú ba im cc tr A, B, C sao cho OA = BC, O l gc ta , A l cc tr thuc trc tung, B v C l hai im cc tr cũn li. 99.CâuI .(2 điểm) (KA - 07) Cho hàm số y = 22 2( 1) 4 2 x m x m m x (1) m là tham số 1.Khảo sát vàvẽ đồ thị hàm số (1) khi m = 1 2Tìm m để hàm số (1) có cực đại vàcực tiểu, đồng thời các điểm cựctrị của đồ thị cùng với gốc toa độ O tạo thành một tam giác vuông tại O 100.CâuI (2 điểm) (KB - 07)Cho hàm số : y = -x 3 +3x 2 +3(m 2 -1)x -3m 2 -1 (1) ,m là tham số. 1. Khảo sát vàvẽ đồ thị hàm số (1) khi m = 1 2. Tìm m để hàm số (1) có cực đại vàcực tiểu, đồng thời các điểm cựctrị của đồ thị hàm số (1) cách đều gốc toạ độ O. 101.Câu I: ( 2 điểm) (DBKA - 07)Cho hàm số y = x + m + 2x m ( C m ) 1. Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số với m = 1. 2.Tìm m để đồ thị (C m ) có cựctrị tại các điểm A, B sao cho đ-ờng thẳng AB đi qua gốc toạ độ 102.Câu I (2 điểm) (DBKB - 07) Cho hàm số y =-x+1+ x m 2 (C m ) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số với m =1. 115 bi toỏn v: S bin thiờn v cc tr - http://trithuctoan.blogspot.com/ http://trithuctoan.blogspot.com/ 2.Tìm m để đồ thị (C m ) có cực đại tại điểm A sao cho tiếp tuyến với (C m ) tại A cắt trục Oy tại B mà tam giác OBA vuông cân. 103.Câu I.(2 điểm). (DBKB - 06) Cho hàm số y = x 3 +( 1-2m)x 2 +(2-m)x + m +2. ( m là tham số ) (1) Khảo sát Sựbiếnthiênvàvẽ đồ thị của hàm số (1) khi m = 2. 1.Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại ,điểm cực tiểu ,đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. 104.Câu I (2 điểm) (KA - 05) Gọi (C m ) là đồ thị của hàm số 1 *y mx x ( m là tham số ) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (*) khi m = 1/4. 2.Tìm m để hàm số (*) có cựctrịva fkhoảng cách từ điểm cực tiểu của (C m ) đến tiệm cận xiên của (C m ) bằng 1 2 . 105.Câu I (2 điểm) (DBKB - 05)Gọi (C m ) là đồ thị của hàm số x mx m y xm 22 2 1 3 (*) ( m là tham số) 1.Khảo sát sựbiếnthiênvàvẽ đồ thị của hàm số (*) khi m = 1. 2.Tìm m để đồ thị (C m ) có hai điểm cựctrị nằm về hai phía đối với trục tung. 106.Câu I (2 điểm) . (DB-KA-04)Cho hàm số y = x 4 -2m 2 x 2 +1 (1) (m là tham số). 1.Khảo sát hàm số (1) khi m =1. 2.Tìm m để đồ thị hàm số (1) có ba điểm cựctrị là ba đỉnh của một tam giác vuông cân. 107.Câu 1.(2 điểm ) . (DB-KB-04)Cho hàm số y = x 3 - 2mx 2 +m 2 x - 2 (1) ( m là tham số ) . 1.Khảo sát hàm số (1) khi m = 1. 2.Tìm m để hàm số (1) đạt cực tiểu tại x = 1. 108.Câu I (2 điểm) (DB-KB-04) Cho hàm số số thamlà m (1) 1 22 2 x mxx y 1.Khảo sát hàm số (1) khi m = 1. 2.Tìm m để đồ thị (1) có hai điểm cựctrị A,B .Chứng minh rằng khi đó đ-ờng thẳng AB song song với đ-ờng thẳng d: 2x- y -10 = 0. 109.Câu I.( 2 điểm) . (CT-KA-03)Cho hàm số )( )( mx mmxmx y 2 412 22 (1) ( m là tham số ) 1.Tìm m để đồ thị của hàm số (1) có cựctrịvà tính khoảng cách giữa hai điểm cựctrị của đồ thị hàm số (1). 2.Khảo sát sựbiếnthiênvàvẽ đồ thị hàm số (1) khi m = 0. 110 .Câu I: (2 điểm).(DB -KD-03) Cho hàm số . 3 65 22 x mxx y (1) (m là tham số). 1. Khảo sát vàvẽ đồ thị hàm số (1) khi m=1. 2. Tìm m để hàm số (1) đồng biến trên khoảng (1; ) . 111. Câu I: (ĐH: 2,5 điểm,CĐ:3,0 điểm). (CT -KA-02) Cho hàm số : y = -x 3 +3mx 2 +3( 1-m 2 )x +m 3 m 2 (1) ( m là tham số) 1.Khảo sát vàvẽ đồ thị hàm số (1) khi m=1. 2.Tìm k dể ph-ơng trình : -x 3 +3x 2 +k 3 -3k 2 = 0 có ba nghiệm phân biệt. 3.Viết ph-ơng trình đ-ờng thẳng đi qua 2 diểm cựctrị của đồ thị hàm số (1). 112. Câu I (2 điểm )(DB -KA-02)Cho hàm số y= x mxx 1 2 (1) (m là tham số) 1 Khảo sát vàvẽ đồ thị hàm số (1) khi m=0 2.Tìm m để hàm số (1) có cực đại vàcực tiểu .Với giá trị nào của m thì khoảng cách giữa hai điểm cựctrị của đồ thị hàm số (1) bằng 10 [...]... ;CĐ:2,5đ (CT -KB-02) Cho hàm số : y=mx4+(m2-9)x2+10 ; (1) (mlà tham số ) 1 Khảo sát sự biếnthiênvà vẽ đồ thị của hàm số (1) khi m=1 2.Tìm m để hàm số (1) có ba điểm cực trị x 2 2x m 115. Câu I.( 2,5 điểm) (DB -KB-02)Cho hàm số y x 2 (1) ( m là tham số ) 1.Xác định m để hàm số (1) nghịch biến trên khoảng (-1;0) 2.Khảo sát vàvẽ đồ thị hàm số (1) khi m = 0 3.Tìm a để ph-ơng trình sau có nghiệm 91 1 x.. .115 bi toỏn v: S bin thiờn v cc tr - http://trithuctoan.blogspot.com/ 113 Câu II (2điểm) (DB -KA-02)Cho hàm số y= (x-m)3 -3x (m là tham số ) 1.Xác định m để hàm số đã cho đạt cực tiểu tại điểm có hoành độ x=0 2.Khảo sát vàvẽ đồ thị hàm số đã cho khi m=1 3 Tìm k để hệ bất ph-ơng trình sau có nghiệm x 1 3 3x