1 PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG ÔN THIĐẠIHỌC NĂM 2009 I. Đường thẳng 1. Phươngtrìnhđường thẳng a) Các định nghĩa • Vectơ () ;nAB G khác vectơ 0 G và có giá vuông góc với đường thẳng ( ) d được gọi là vectơ pháp tuyến của đường thẳng ( ) d • Vectơ () ;uab G khác vectơ 0 G có giá song song hoặc trùng với ( ) d được gọi là vectơ chỉ phương của đường thẳng () d Nếu 0a ≠ thì b k a = được gọi là hệ số góc của đường thẳng ( ) d • Chú ý: - Các vectơ pháp tuyến (vectơ chỉ phương) của một đường thẳng thì cùng phương. Nếu () ; nAB G là vectơ pháp tuyến của ( ) d thì ( ) .; k n kA kB = G cũng là vectơ pháp tuyến của ( ) d - Vectơ pháp tuyến và vectơ chỉ phương của một đường thẳng thì vuông góc nhau. Nếu () ; nAB G là vectơ pháp tuyến thì ( ) ; uB A − G là vectơ chỉ phương. b) Các dạng phươngtrình • Phươngtrình tổng quát của đường thẳng ( ) d đi qua điểm ( ) 00 ; M xy có vectơ pháp tuyến () ; nAB G là: () ( ) ( ) () 00 00 :0 0 dAxxByy Ax By C C Ax By −+ −= ⇔++= =−− Nhận xét: Phươngtrìnhđường thẳng () 1 d song song với ( ) d có dạng: ( ) 1 :0dAxByC ′ ++= Phươngtrìnhđường thẳng () 2 d vuông góc với ( ) d có dạng ( ) 2 :0dBxAyC ′′ −+= Phươngtrìnhđường thẳng có hệ số góc k và đi qua điểm ( ) 00 ; A xy là: () 00 ykxx y =−+ Phươngtrìnhđường thẳng đi qua ( ) ( ) ;0 , 0; Aa B b là: () :1 xy AB ab + = (phương trình đoạn chắn) • Phươngtrình tham số của đường thẳng ( ) d đi qua ( ) 00 ; Nx y có vectơ chỉ phương ( ) ;uab G là: () 0 0 : x xat d yybt =+ ⎧ ⎨ =+ ⎩ ( t là tham số) MATHVN.COM - www.mathvn.com 2 • Phươngtrình chính tắc của đường thẳng ( ) d đi qua ( ) 00 ;Nx y có vectơ chỉ phương ( ) ;uab G () ,0ab≠ là: 00 x xyy ab −− = c) Vị trí tương đối giữa hai đường thẳng Cho hai đường thẳng () 11 1 1 :0dAxByC++= và ( ) 22 2 2 :0dAxByC+ += . Khi đó số giao điểm của () 1 d và () 2 d là số nghiệm của hệ phương trình: () 11 1 22 2 0 : 0 Ax By C I Ax By C + += ⎧ ⎨ + += ⎩ Trong trường hợp () 1 d và () 2 d cắt nhau thì nghiệm của ( ) I chính là tọa độ của giao điểm. 2. Khoảng cách và góc a) Khoảng cách • Cho đường thẳng () :0Ax By CΔ++= và điểm ( ) 00 ; A xy . Khoảng cách từ điểm A đến đường thẳng ( ) d là: () 00 / 22 A Ax By C d AB Δ + + = + • Cho hai đường thẳng () 11 1 :0Ax By CΔ++= và ( ) 22 2 2 :0Ax By CΔ ++= cắt nhau tại A . Khi đó phươngtrình hai đường phân giác của góc A là: () 11 12 2 2 1 22 22 11 22 :0 Ax By C Ax B y C d AB AB ++ ++ += ++ và () 11 12 2 2 2 22 22 11 22 :0 Ax By C Ax B y C d AB AB + +++ − = ++ b) Góc Hai đường thẳng () 1 d và () 2 d cắt nhau tại A tạo ra 4 góc, góc nhỏ nhất trong 4 góc đó được gọi là góc giữa hai đường thẳng ( ) 1 d và ( ) 2 d . Nếu 12 //dd thì góc giữa hai được thẳng là 0 o . Gọi α là góc giữa () 1 d và () 2 d , β là góc giữa hai vectơ chỉ phương () 111 ;uab JG và ( ) 222 ;uab J JG . Khi đó: Nếu 090 oo ≤β≤ thì α=β Nếu 90 180 oo <β≤ thì 180 o α= −β Trong đó β được tính như sau: 12 12 12 22 22 12 11 22 . cos . . uu aa bb uu abab + β= = + + JGJJG JG JJG Khi đó 12 12 22 22 11 22 cos cos . aa bb abab + α= β= ++ Các kết quả trên vẫn đúng nếu thay vectơ chỉ phương bằng vectơ pháp tuyến. Trường hợp đặc biệt: Phươngtrìnhđường thẳng đi qua điểm ( ) 00 ; A xy hợp với Ox một góc α có hệ số góc là tank =α và có phươngtrình là: ( ) 00 ykxx y= −+ 3. Bài tập về đường thẳng MATHVN.COM - www.mathvn.com 3 a) Bài tập cơ bản Bài 1. (Phương trình các đường thẳng cơ bản trong tam giác). Cho tam giác ABC có A(1;2), B(-3; 4) và C(2;0). a) Viết phươngtrìnhđường trung tuyến AM. b) Viết phươngtrìnhđường cao BK c) Viết phươngtrìnhđường trung trực của AB. Bài 2. (Tìm tọa độ các điểm đặc biệt trong tam giác) Cho tam giác ABC có A(0;1), B(-2; 3) và C(2;0) a) Tìm tọa độ trực tâm H của tam giác ABC. b) Tìm tọa độ tâm I của đườngtròn ngoại tiếp của tam giác ABC. c) Viết phươ ng trìnhđường thẳng qua IH và chứng minh rằng IH đi qua trọng tâm G của tam giác ABC. Bài 3. (Tìm điểm đối xứng của một điểm qua một đường thẳng). Cho 2 điểm A(1;2) và B(-3; 3) và đường thẳng ( ) :0dxy − = a) Tìm tọa độ hình chiếu của A trên ( ) d b) Tìm tọa độ điểm D đối xứng với A qua d. c) Tìm giao điểm của () B D và () d Bài 4. (Tìm điểm trên đường thẳng cách một điểm khác một khoảng cho trước) Cho đường thẳng 22 : 12 x t y t =− − ⎧ Δ ⎨ =+ ⎩ và điểm M(3;1). a) Tìm trên Δ điểm A sao cho 13AM = b) Tìm trên Δ điểm B sao cho MB là ngắn nhất. Bài 5. (Viết phươngtrìnhđường thẳng qua một điểm cách một điểm một khoảng cho trước) Cho điểm () 1;1A và điểm () 2; 2B − . Viết phươngtrìnhđường thẳng ( ) d qua A và cách B một khoảng bằng 5 . Bài 6. (Viết phươngtrìnhđường thẳng hợp với một đường thẳng cho trước một góc) Cho đường thẳng () 10xy Δ+−= . Viết phươngtrìnhđường thẳng ( ) d hợp với () Δ một góc a) 0 90 b) 0 45 c) 0 60 d) 0 30 b) Bài tập nâng cao Bài 1. (B – 2004) Trong mặt phẳng tọa độ Oxy cho hai điểm ( ) 1; 1A và () 4; 3B − . Tìm điểm C thuộc đường thẳng 210xy−−= sao cho khoảng cách từ C đến đường thẳng AB bằng 6. Bài 2. (A – 2006) Trong mặt phẳng tọa độ, cho các đường thẳng: () () ( ) 123 :30 :40 :20dxy dxy dxy ++= −−= − = MATHVN.COM - www.mathvn.com 4 Tìm tọa độ điểm M trên () 3 d sao cho khoảng cách từ M đến đường thẳng () 1 d bằng hai lần khoảng cách từ M đến ( ) 2 d Bài 3. (D – 2004) Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có các đỉnh ()()() 1; 0 ; 4; 0 ; 0;ABCm − với 0m ≠ . Tìm tọa độ trọng tâm G của tam giác ABC theo m. Xác định m để tam giác GAB vuông tại G. Bài 4. Trong mặt phẳng tọa độ Đềcac vuông góc Oxy cho hình chữ nhật ABCD có tâm 1 ;0 2 I ⎛⎞ ⎜⎟ ⎝⎠ , phươngtrìnhđường thẳng AB là 220xy− += và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết rằng đỉnh A có hoành độ âm. Bài 5. Cho đường thẳng () :240dx y −+= và điểm ( ) 2; 0A − . Tìm điểm B trên trục hoành và điểm C trên đường thẳng d sao cho tam giác ABC vuông cân tại C. Bài 6 (A – 2002). Trong mặt phẳng với hệ tọa độ Đêcac vuông góc cho tam giác ABC vuông tại A, phươngtrìnhđường thẳng BC là 330xy− −= , các đỉnh A và B thuộc trục hoành và bán kính đườngtròn nội tiếp bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC. Bài 7. (B – 2003) Trong mặt phẳng tọa độ Đềcac vuông góc Oxy cho tam giác ABC có n ,90 o AB AC BAC == . Biết () 1; 1M − là trung điểm cạnh BC và 2 ;0 3 G ⎛⎞ ⎜⎟ ⎝⎠ là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C Bài 8 (A – 2004). Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm () 2; 0A và () 3; 1B − − . Tìm tọa độ trực và tọa độ tâm đườngtròn ngoại tiếp của tam giác OAB. Bài 9 ( A – 2005) Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng () ( ) 12 :0 :210dxy d xy −= +−= Tìm tọa độ các đỉnh hình vuông ABCD biết rằng đỉnh A thuộc 1 d , đỉnh C thuộc 2 d và các đỉnh B, D thuộc trục hoành. Bài 11 (B – 2008) Trong mặt phẳng với hệ tọa độ Oxy, hãy xác định tọa độ điểm C của tam giác ABC biết rằng hình chiếu vuông góc của điểm C trên đường thẳng AB là ( ) 1; 1H − − . Đường phân giác trong của góc A có phươngtrình 20xy− += và đường cao kẻ từ B có phươngtrình 4310xy+−= Bài 10 ( B – 2007) Trong mặt phẳng tọa độ với hệ tọa độ Oxy, cho điểm () 2; 2A và các đường thẳng: () () 12 :20 :80dxy dxy +−= +−= MATHVN.COM - www.mathvn.com 5 Tìm tọa độ các điểm B và C lần lượt thuộc các đường thẳng ( ) 1 d và ( ) 2 d sao cho tam giác ABC vuông cân tại A. Bài 12. Cho hai đường thẳng 1 3 : 31 x y d − = − và 2 3 : 2 x t d y t = + ⎧ ⎨ = − ⎩ và điểm M(1,2) Tìm trên 1 d điểm A và 2 d điểm B sao cho A, B đối xứng nhau qua M. Bài 13. Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại C . Khoảng cách từ trọng tâm G đến trục hoành bằng 1 3 và tọa độ hai đỉnh ( ) ( ) 2; 0 , 2; 0AB − . Tìm tọa độ đỉnh C . Bài 14 Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm ( ) ( ) 0; 4 , 5; 0AB và đường thẳng () :2 2 1 0dxy−+= . Lập phươngtrình hai đường thẳng lần lượt đi qua , A B nhận đường thẳng () d làm đường phân giác. Bài 15. Trong mặt phẳng với hệ tọa độ Oxy , cho đường thẳng ( ) :220dx y − += và điểm () 0; 2A . Tìm trên () d hai điểm , B C sao cho tam giác A BC vuông tại B và 2 AB BC = . Bài 16. Trong mặt phẳng với hệ trục tọa độ Oxy cho hai đường thẳng () 1 :3 4 6 0 dxy −−= và () 2 :5 12 4 0 dxy ++= cắt nhau tại điểm M . Lập phươngtrìnhđường thẳng qua () 1;1 K cắt ()() 12 , dd tai hai điểm , AB sao cho tam giác M AB cân tại M . Bài 17. Cho 3 đường thẳng () ( ) ( ) 12 3 :0,:20,:210 dxy dx y dxy += + = − += . Viết phươngtrình các cạnh của tam giác A BC ; biết A là giao điểm của ( ) 1 d và ( ) 2 d ; () 3 , B Cd ∈ và tam giác B AC vuông cân tại A Bài 18 – 20. Các bài cực trị cơ bản. Bài 18. Cho đường thẳng () :10 dxy ++= và hai điểm ( ) ( ) 2;3 , 2; 0 AB . Tìm điểm M trên đường thẳng ( ) d sao cho: a) M AMB + nhỏ b) M AMB − lớn nhất Bài 19. Cho đường thẳng () :220 dx y +−= và hai điểm ( ) ( ) 2; 0 , 2; 6 AB − . Tìm điểm N trên đường thẳng ( ) d sao cho: a) NA NB + là nhỏ nhất b) NA NB − lớn nhất Bài 20 Bài 3. Cho đường thẳng () :10 dxy + += và hai điểm ( )( ) 2;3 , 4;1 AB − . Tìm điểm M trên đường thẳng ( ) d sao cho: a) M AMB + JJJG JJJG nhỏ nhất. b) 22 23 M AMB+ nhỏ nhất. b) Chuyên đề - Xác định các yếu tố của tam giác khi biết một số yếu tố cho trước Dạng 1: Biết tọa độ đỉnh và phươngtrình các đường cùng tính chất. Cho tam giác ABC có điểm A(2;2), hai đường thẳng 1 :9 3 4 0dxy − −= , 2 :20dxy +−= . Sử dụng giả thiết này để giải các bài toán sau. MATHVN.COM - www.mathvn.com 6 1. Biết tọa đỉnh và phươngtrình hai đường cao. Cho d 1 , d 2 lần lượt là các đường cao BH và CK. a) Viết phươngtrình cạnh AB, AC b) Viết phươngtrình cạnh BC, và đường cao còn lại. 2. Biết tọa độ đỉnh và phươngtrình hai đường trung tuyến. Cho d 1 , d 2 là các đường trung tuyến BM và CN. a) Tìm tọa độ trọng tâm của tam giác ABC, tìm điểm D đối xứng của A qua G. b) Viết phươngtrìnhđường thẳng qua D song song với BM c) Viết phươngtrìnhđường thẳng qua D song song với CN d) Tìm tọa độ của B, C. 3. Biết tọa độ đỉnh và phươngtrình hai đường phân giác. Cho d 1 , d 2 là các đường phân giác trong của góc B và C. a) Tìm tọa độ hình chiếu của A trên d 1 , d 2 b) Tìm tọa độ điểm A’, A’’ đối xứng của A qua d 1 , d 2 . c) Viết phươngtrìnhđường thẳng BC. d) Xác định tọa độ điểm B, C. Dạng 2: Biết tọa độ đỉnh và phươngtrình hai đường khác tính chất. Cho tam giác ABC đình A(2;-1), hai đường thẳng 12 :210,: 30 dx y dxy − += + += Sử dụng giả thiết trên để giải các bài toán sau: 1. Biết tọa độ đỉnh A, phươngtrìnhđường cao BH và phân giác CE. Cho d 1 , d 2 lần lượt là đường cao BH và phân giác trong CE. a) Viết phươngtrìnhđường thẳng AC b) Xác định tọa độ C là giao điểm của đt CD và đt AC. c) Tìm điểm A’ đối xứng của A qua CD d) Viết phươngtrìnhđường thẳng BC đi qua A’ và C. 2. Biết tọa độ đỉnh A, đường cao BH và trung tuyến CM Cho d 1 , d 2 lần lượt là đường cao BH và trung tuyến CM. a) Viết phươngtrìnhđường thẳng AC. b) Gọi B(x B , y B ) tìm tọa độ M theo tọa độ của B. c) Tìm tọa độ của B. MATHVN.COM - www.mathvn.com 7 II. Đườngtròn 1. Phươngtrìnhđườngtròn a) Phương trìnhđườngtrònPhươngtrìnhđườngtròn () C có tâm ( ) ; I ab có bán kính R là: ()( ) ( ) () 22 2 :1Cxa yb R−+−= Phươngtrìnhđườngtròn có dạng: 22 22 0x y ax by c++ + += () 2 với điều kiện 22 0abc+ −> . Khi đó tâm () , I ab −− và bán kính 22 R abc =+− b) Cách viết phươngtrình tiếp tuyến Cho đườngtròn ()( ) ( ) 22 2 :Cxa yb R−+−= • Tiếp tuyến tại một điểm () 00 ; Ax y là phươngtrìnhđường thẳng qua A có vectơ pháp tuyến là: () 00 ; I Axayb=− − JJG nên có phương trình: ( )( )( )( ) 0000 0 xaxx ybyy − −+− −= • Tiếp tuyến của đườngtròn đi qua điểm ( ) 00 ; Px y nằm ngoài đườngtròn là đường thẳng qua P và cách () ; I ab một khoảng bằng bán kính R . (đã biết cách viết) c) Một vài tính chất của đường tròn. Điều kiện tiếp xúc Điều kiện tiếp xúc của đườngtròn ()( ) ( ) 22 2 :Cxa yb R− +− = với đường thẳng () :0 Ax By C Δ++= là : / 22 I aA bB C dR R AB Δ ++ = ⇔= + Đặt biệt: + Khi Ox Δ≡ thì bR = + Khi OyΔ≡ thì aR = Điều kiện để đườngtròn () 11 ; I R và đườngtròn ( ) 22 ; I R tiếp xúc ngoài là 12 1 2 I IRR= + Điều kiện để đườngtròn () 11 ; I R và đườngtròn ( ) 22 ; I R tiếp xúc trong là 12 1 2 I IRR =− Tính chất tiếp tuyến, cát tuyến Nếu PA, PB là hai tiếp tuyến của đườngtròn tâm I bán kính R (A, B là hai tiếp điểm) thì + PA PB= + I P là đường trung trực của AB Cho AB là dây cung của đườngtròn và M là trung điểm của AB thì I MAB⊥ và 2 2 4 AB IM R=− MATHVN.COM - www.mathvn.com 8 2. Bài tập về đườngtròn a) Viết phươngtrìnhđườngtròn khi biết một số yếu tố. Trong phần này để viết phươngtrìnhđườngtròn ta cần xác định tọa độ tâm và độ dài bán kính của đường tròn. Ta thường gọi ( ) , I ab là tâm, bán kính R . Từ những điều kiện đã cho thiết lập phương trình, hệ phươngtrình có ẩn là ,,abR . Chú ý đến các điều kiện tiếp xúc. Bài 1. a) Viết phươngtrìnhđườngtròn đi qua hai điểm A(0;1), B(2;-2) và có tâm nằm trên đường thẳng () :20 dxy −−= b) Viết phươngtrìnhđườngtròn đi qua A(0;1) và B(2;-3) và có bán kính R = 5. c) Viết phươngtrìnhđườngtròn đi qua gốc tọa độ, có bán kính 5R = và có tâm nằm trên đường thẳng () :10 dxy +−= Bài 2. a) Viết phươngtrìnhđườngtròn tiếp xúc với hai đường thẳng ( ) 1 :3410 dxy −+= , () 2 :4 3 7 0 dxy ++= và đi qua điểm A(2;3). b) Viết phươngtrìnhđườngtròn bán kính 5R = , đi qua gốc tọa độ và tiếp xúc với đường thẳng () :2 5 0 dxy −+= . c) Viết phươngtrìnhđườngtròn đi qua A(3;2), B(1;4) và tiếp xúc với trục Ox . Bài 3 Trong mặt với hệ tọa độ Đềcac vuông góc Oxy cho đường tròn: ()( ) ( ) 22 :1 24Cx y−+− = và đường thẳng ( ) :10 dxy − −= . Viết phươngtrìnhđườngtròn () C ′ đối xứng với ( ) C qua đường thẳng () d . Tìm tọa độ giao điểm của hai đường tròn. Bài 4 (B – 2005) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm () 2; 0 A và ( ) 6; 4 B . Viết phươngtrìnhđườngtròn () C tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của ( ) C đến điểm B bằng 5. Bài 5 (A – 2007) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có ()( ) 0; 2 , 2; 2 AB − − và () 4; 2 C − . Gọi H là chân đường cao kẻ từ B; M, N lần lượt là trung điểm của cạnh AB và AC. Viết phươngtrìnhđườngtròn đi qua các điểm H, M, N. Bài 6. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng () () 12 :230 :4350 dx y d xy −+= +−= Lập phươngtrìnhđườngtròn có tâm I trên ( ) 1 d tiếp xúc với ( ) 2 d và có bán kính 2 R = Bài 7. Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn: () () 22 22 12 :16 :20 Cxy Cxy x += +−= Lập phươngtrìnhđườngtròn () C có tâm ( ) 2, I a tiếp xúc trong với ( ) 1 C và tiếp xúc ngoài với () 2 C MATHVN.COM - www.mathvn.com 9 Bài 8 . Cho đườngtròn ()( ) ( ) 22 :1 25Cx y−+− = . a) Viết phươngtrình tiếp tuyến của đườngtròn biết tiếp tuyến đi qua điểm () 2;1 B − b) Viết phươngtrìnhđườngtròn có tâm thuộc trục tung có bán kính bằng hai lần bán kính của () C và tiếp xúc ngoài với () C Bài 9 Viết phươngtrìnhđườngtròn tiếp xúc với hai trục tọa độ và đi qua điểm () 4; 2 A Bài 10 Viết phươngtrìnhđườngtròn có tâm thuộc trục tung và tiếp xúc với hai đường thăng () 1 :240 dx y −+= và () 2 :2 4 0 dxy −−= b) Viết phươngtrình tiếp tuyến, cát tuyến Bài 1. Cho đườngtròn có phươngtrình ()() 22 234xy− +− = . a) Viết phươngtrình tiếp tuyến của đườngtròn tại điểm thuộc đườngtròn và có hoành độ x = 1. b) Viết phươngtrình tiếp tuyến của đườngtròn đi qua gốc tọa độ. Tìm phươngtrìnhđường thẳng đi qua hai tiếp điểm. c) Viết phươngtrình tiếp tuyến của đườngtròn vuông góc với đường thẳng () :10 dxy + −= . Bài 2. Cho đườngtròn ()( ) 22 1325xy−++ = . ( C) a) Viết phươngtrìnhđường thẳng đi qua gốc tọa độ và cắt đườngtròn theo một dây có độ dài bằng 8. b) Viết phươngtrìnhđường thẳng qua qua điểm A(-4;0) cắt đườngtròn tại hai điểm A, B sao cho tam giác IAB có diện tích là 25 4 . Bài 3. Trong mặt phẳng với hệ tọa độ Oxy, cho đườngtròn ()( ) ( ) 22 :1 29Cx y− ++ = và đường thẳng () :3 4 1 0 dxy −+= . Tìm điểm P trên đường thẳng ( ) d sao cho có thể vẽ được hai tiếp tuyến đến đườngtròn là ,PA PB (A, B là hai tiếp điểm) mà tam giác PAB : 1. Tam giác đều 2. Tam giác vuông tại P Bài 4. Trong mặt phẳng tọa Oxy, cho đườngtròn ()( ) 2 2 :3 5Cx y− += và hai điểm () 5 1; 1 , 2; 2 AM ⎛⎞ − − ⎜⎟ ⎜⎟ ⎝⎠ . a) Tìm trên đườngtròn hai điểm B, C sao cho tam giác ABC đều. b) Viết phươngtrìnhđường thẳng ( ) Δ qua M sao cho cắt đườngtròn tại hai điểm , E F mà n 60 o EAF = Bài 5. Trong mặt phẳng tọa độ Oxy, cho đườngtròn ( ) 22 :22100 Cx y y y + −+−= và điểm () 1;1M . Lập phươngtrìnhđường thẳng qua M cắt ( ) C tại ,AB sao cho 2 M AMB= . MATHVN.COM - www.mathvn.com 10 Bài 6 (D – 2007) Trong mặt phẳng với hệ tọa độ Oxy, cho đườngtròn ()( ) ( ) 22 :1 29 Cx y−++ = và đường thẳng () :3 4 0 dxym −+= . Tìm m để trên ( ) d có duy nhất một điểm P mà từ đó vẽ được hai tiếp tuyến PA, PB tới () C (A, B là các tiếp điểm) sao cho tam giác PAB đều. Bài 7 (B – 2006) Trong mặt phẳng tọa độ Oxy, cho đườngtròn ( ) 22 :2660 Cx y x y +−−+= và điểm () 3;1 M − . Gọi 12 , TT lần lượt là các tiếp điểm của các tiếp tuyến kẻ từ M đến ( ) C . Viết phươngtrìnhđường thẳng 12 TT . c) Các bài toán khác. Bài 1 . Cho đườngtròn có phươngtrình ()() 22 2 215 xy− +− = và đường thẳng () ( ) :43 dykx =++ . a) Chứng minh rằng đường thẳng () d luôn đi qua một điểm cố định b) Tìm k để đường thẳng cắt đườngtròn tại hai điểm phân biệt , A B . c) Khi đường thẳng cắt đườngtròn tại , A B . Chứng minh trung điểm I của A B thuộc 1 đường cố định, viết phươngtrìnhđường cố định đó. Bài 2 Cho đườngtròn () C có phươngtrình ()() 22 5425 xy− +− = . ( ) ;0 Pm là một điểm thay đổi trên trục hoành a) Tìm m để từ P kẻ được hai tiếp tuyến đến đườngtròn ( ) C b) Với điều kiện của câu a, giả sử hai tiếp tuyến đó là , PA PB (A,B là hai tiếp điểm). Chứng minh rằng A B luôn đi qua một điểm cố định khi P di chuyển trên trục hoành, tìm tọa độ điểm cố định đó. Bài 3. Cho ba điểm ()()( ) 2; 4 , 1; 5 , 6; 4 ABC −− − . a) Viết phươngtrìnhđườngtròn (C) đi qua ba điểm ,, ABC . Tìm tọa độ tâm I và bán kính R của đườngtròn vừa tìm được. b) Viết phươngtrìnhđườngtròn đi qua I và O cắt ( C) tại hai điểm D, E sao cho tam giác IDE có diện tích lớn nhất. MATHVN.COM - www.mathvn.com