Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt? A 6 đỉnh, 9 cạnh, 5 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉ[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu Khối đa diện loại {5; 3} có số mặt A 30 B Câu Dãy số sau có giới hạn khác 0? sin n A √ B n n C 12 C n+1 n D 20 D n + + ··· + n Mệnh đề sau đúng? n2 + 1 A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = Câu [3-1132d] Cho dãy số (un ) với un = Câu Giá trị lim (3x2 − 2x + 1) x→1 A B C +∞ D Câu [12221d] Tính tổng tất nghiệm phương trình x + = log2 (2 x + 3) − log2 (2020 − 21−x ) A 13 B log2 2020 C log2 13 D 2020 x Câu Tính diện tích hình phẳng √ giới hạn đường y = xe , y = 0, x = 3 B C D A 2 x−3 Câu [1] Tính lim bằng? x→3 x + A +∞ B C D −∞ Câu [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C D a A 2 Câu 10 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp cho 1728 Khi đó,√các kích √ thước hình hộp A 2, 4, B 3, 3, 38 C 8, 16, 32 D 6, 12, 24 Câu 11 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln B ln 14 C ln 12 D ln 10 Câu 12 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = 22 C y(−2) = −18 D y(−2) = Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Câu 14 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Giảm n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi Câu 15 Thập nhị diện (12 mặt đều) thuộc loại A {4; 3} B {5; 3} C {3; 4} D {3; 3} Trang 1/4 Mã đề Câu 16 [3] Biết giá trị lớn hàm số y = ln2 x m đoạn [1; e3 ] M = n , n, m x e số tự nhiên Tính S = m2 + 2n3 A S = 32 B S = 24 C S = 22 D S = 135 ! 1 Câu 17 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n D A +∞ B C 2 Câu 18 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 3, 55 C 24 D 15, 36 Câu 19 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 B 18 C 27 D 12 A Câu 20 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x π Câu 21 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu √ thức T = a + b √ B T = C T = D T = A T = 3 + √ Câu 22 Thể tích khối lập phương có cạnh a √ √ √ 2a A 2a3 B C V = 2a3 D V = a3 Câu 23 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ √ Thể tích khối chóp S 3.ABC √ √ a a a3 a3 A B C D 12 12 [ = 60◦ , S O Câu 24 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ O đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 17 19 Câu 25 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C 2a D a 2 Câu 26 Cho hình chóp S ABCD √ có đáy ABCD hình vng cạnh a Hai mặt phẳng (S AB) (S AD) vng √ góc với đáy, S C = a3 Thể tích khối chóp S ABCD √ a3 a a3 3 A B C a D 3 Câu 27 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Trang 2/4 Mã đề Câu 28 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt d = 30◦ , biết S BC tam giác Câu 29 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 log(mx) = có nghiệm thực Câu 30 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m = B m < ∨ m > C m ≤ D m < Câu 31 Mỗi đỉnh hình đa diện đỉnh chung A Hai mặt B Ba mặt C Năm mặt D Bốn mặt Z x a a Câu 32 Cho I = dx = + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá √ d d 4+2 x+1 trị P = a + b + c + d bằng? A P = 28 B P = −2 C P = 16 D P = Câu 33 [1] Giá trị biểu thức 9log3 12 A B C 144 D 24 Câu 34 [2] Tìm m để giá trị nhỏ hàm số y = 2x3 + (m√ + 1)2 x [0; 1] 2√ D m = ± A m = ±3 B m = ±1 C m = ± Câu 35 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 A k = B k = C k = D k = 15 18 Câu 36 Cho hai đường thẳng phân biệt d d đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có C Khơng có D Có hai Câu 37 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 B C D A 2 Câu 38 [1-c] Giá trị biểu thức log0,1 102,4 A −7, B 7, C 0, D 72 Câu 39 Cho hình chóp S ABCD có đáy ABCD hình thang vuông A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt √ phẳng vng góc với (ABCD) Thể tích khối chóp √ S ABCD 3 √ a a a A B C a3 D 2 d = 300 Câu 40 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ √ 3a3 a3 3 A V = 6a B V = 3a C V = D V = 2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 3/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C C B D C D C D 10 11 B 14 A 15 B 16 A 17 B 18 19 B 20 A 21 B 22 A 23 B 24 25 A 26 27 A 28 29 31 33 D D D B C 30 A 32 B C 34 D 36 D B 37 A 39 38 A 40 C 12 C 13 D C B ... V = 2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 3/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C C B D C D C D 10 11 B 14 A 15 B 16 A 17 B 18 19 B 20 A 21 B 22 A 23 B 24 25 A 26... giác vuông A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ √ 3a3 a3 3 A V = 6a B V = 3a C V = D V = 2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 3/4 Mã đề ĐÁP... BC tam giác Câu 29 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16