Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 5 B −1 C 1 D[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 x+1 Câu Tính lim x→−∞ 6x − A B Câu Giá trị lim(2x − 3x + 1) x→1 A B 2−n Câu Giá trị giới hạn lim n+1 A B − n2 Câu [1] Tính lim bằng? 2n + 1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 x2 − Câu Tính lim x→3 x − A B −3 − 2n Câu [1] Tính lim bằng? 3n + A B − x−3 Câu 10 [1] Tính lim bằng? x→3 x + A +∞ B −∞ C C D D C D +∞ C −1 D 1 D − C D − !n C un = !n −2 D un = C +∞ D C C C D D Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vô số C 62 D 64 log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 14 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ √ 18 11 − 29 11 − 19 11 − = C Pmin = D Pmin = 21 Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (1; 3; 2) D (2; 4; 6) Câu 19 [12214d] Với giá trị m phương trình A < m ≤ B ≤ m ≤ 3|x−2| = m − có nghiệm C ≤ m ≤ D < m ≤ Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " ! " nhỏ! biểu thức P = x + 2y thuộc tập đây? 5 ;3 B [3; 4) C (1; 2) D 2; A 2 Câu 21 Tính lim A n−1 n2 + B C 12 + 22 + · · · + n2 n3 B +∞ C √ ab D Câu 22 [3-1133d] Tính lim A 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A B Câu 24 Tính lim n+3 A B D C D - C D Câu 25 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = = +∞ lim = a > lim(un ) = +∞ ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn khác 0? sin n A B n n C √ n D n+1 n Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 29 [3-1131d] Tính lim A C 1 + + ··· + 1+2 + + ··· + n B +∞ C D ! D + + ··· + n Mệnh đề sau đúng? n2 + B lim un = 1 C Dãy số un giới hạn n → +∞ D lim un = 0 0 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ C √ B D √ 2 2 a +b a +b a +b a2 + b2 Câu 30 [3-1132d] Cho dãy số (un ) với un = A lim un = Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a C a D B a A Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a 2a a A a B C D 2 Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C a D A 2 Câu 36 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 17 19 Trang 3/5 Mã đề Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 2a a 8a A B C D 9 9 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 3a D 4a A 2a B Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 42 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 43 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) D dx = log |u(x)| + C u(x) Câu 44 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 45 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Khơng có câu D Câu (III) sai sai Trang 4/5 Mã đề Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 48 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C (II) (III) D Cả ba mệnh đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B C D D A B D 11 13 A D 10 C 12 C 14 A 15 D 16 A 18 17 A D 19 D 20 A 21 D 22 D 23 D 24 D 25 B 26 D 27 29 C 31 D 33 A C B 41 C 43 30 D 32 D B C 38 D 40 D 42 A D 45 47 D 36 37 A 39 28 34 35 B 44 C B 49 A C 46 B 48 B 50 B ... đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B C D D A B D 11 13 A D 10 C 12 C 14 A 15 D 16 A 18 17 A D 19 D 20 A 21 D 22 D 23 D 24... + B C 12 + 22 + · · · + n2 n3 B +∞ C √ ab D Câu 22 [3-1133d] Tính lim A 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A B Câu 24 Tính lim n+3 A B D C D - C D Câu 25 Trong mệnh đề đây, mệnh đề sai?... hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Không có câu D Câu (III) sai sai Trang 4/5 Mã đề Câu 46 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x)