Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu Tính lim x→3 A −3 x −9 x−3 B − 2n bằng? Câu [1] Tính lim 3n + 1 A B − 3 Câu Dãy số có giới hạn 0? ! n −2 n3 − 3n B un = A un = n+1 C D +∞ C D C un = n − 4n !n D un = C +∞ D C D !n C !n D Câu Giá trị lim(2x2 − 3x + 1) x→1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B 4 Câu Dãy !n số sau có giới !n hạn 0? B A − e Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim+ f (x) = lim− f (x) = a x→a x→a C lim f (x) = f (a) x→a 2−n n+1 A B 4x + Câu 10 [1] Tính lim bằng? x→−∞ x + A B −4 x→a x→a D f (x) có giới hạn hữu hạn x → a Câu Giá trị giới hạn lim C −1 D C D −1 log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m ≤ C m < D m < ∨ m = Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m > D m ≤ 4 4 Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > Trang 1/5 Mã đề Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vơ nghiệm B C Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B D 3|x−1| C = 3m − có nghiệm D Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [−1; 0] Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C D A +∞ B 2 cos n + sin n Câu 22 Tính lim n2 + A B C +∞ D −∞ Câu 23 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = v! n un B Nếu lim un = a > lim = lim = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 24 Dãy số sau có giới hạn khác 0? sin n A √ B n n Câu 25 Tính lim A 2n2 − 3n6 + n4 B C n C Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D n+1 n D un D Trang 2/5 Mã đề ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 28 Tính lim n+3 A B C D Câu 29 Phát biểu sau sai? A lim √ = n B lim un = c (Với un = c số) C lim qn = với |q| > D lim 1 Câu 30 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B = với k > nk ! C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 5a 2a B C D A 9 9 Câu 33 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C a D A 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 √ Câu 35 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a A B C D 29 29 29 29 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a Khoảng cách từ O đến (S √ √ a 57 2a 57 a 57 A B a 57 C D 19 17 19 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 19 17 19 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a B 4a C 3a D 2a A Câu 41 Z Các khẳng định sau Z sai? A Z C Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = F(x) + C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Z f (t)dt = F(t) + C Câu 42 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) B Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 43 Z Trong khẳng định sau, khẳng định sai? Z xα+1 A dx = ln |x| + C, C số B xα dx = + C, C số α+1 Z x Z C 0dx = C, C số D dx = x + C, C số Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (II) (III) D (I) (III) Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Trang 4/5 Mã đề Câu 46 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Chỉ có (I) D Cả hai câu Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 49 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 50 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B D C B A C C C 10 C 11 12 D 13 C 14 15 C 16 17 A 18 19 D 21 23 D C D B 20 C 22 B C B 24 D D 25 D 26 27 D 28 C 29 C 30 A 31 C 32 B 33 C 34 B 35 C 36 D 37 38 39 A 40 A 41 A 42 43 B 44 A 45 B 46 47 49 D B D B D B 48 D 50 D ... g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B D C B A C C C 10 C 11 12 D 13 C 14 15 C 16 17 A 18 19 D 21 23 D C D B 20 C 22 B C B...Câu 14 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vơ nghiệm B C Câu 15 [122 13d] Có giá trị nguyên m để phương trình nhất? A B D 3|x−1| C = 3m − có nghiệm D Câu 16 [122 19d-2mh202050]... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (II) (III) D