Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − n2 2n2 + 1 bằng? A − 1 2 B 1 2 C 1 3[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − n2 bằng? Câu [1] Tính lim 2n + 1 B A − 2 Câu Giá trị lim (3x − 2x + 1) x→1 A +∞ B 2n + Câu Tìm giới hạn lim n+1 A B x − 12x + 35 Câu Tính lim x→5 25 − 5x A +∞ B − 2n bằng? Câu [1] Tính lim 3n + 1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − A B 1 D C D C D C − D −∞ C 4x + bằng? Câu [1] Tính lim x→−∞ x + A B −4 C D − C D − C −1 Câu Cho f (x) = sin x − cos x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x x −1 Câu Tính lim x→1 x − A B −∞ C x+2 Câu 10 Tính lim bằng? x→2 x A B C 2 D D −1 + sin x cos x D +∞ D Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 1] D m ∈ [0; 2] √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 4) D (2; 4; 3) Trang 1/5 Mã đề Câu 15 [12214d] Với giá trị m phương trình A < m ≤ B ≤ m ≤ 1 3|x−2| = m − có nghiệm C < m ≤ D ≤ m ≤ Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = ey − C xy0 = −ey − D xy0 = ey + Câu 16 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m > C m ≤ D m < A m ≥ 4 4 log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x 0 A y0 = B y0 = C y = D y = x ln 10 x3 2x3 ln 10 2x3 ln 10 Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số log(mx) Câu 20 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < ∨ m > C m < D m ≤ ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 22 Tính lim n+3 A B C D 12 + 22 + · · · + n2 Câu 23 [3-1133d] Tính lim n3 A B C +∞ Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B Câu 25 Phát biểu sau sai? A lim √ = n C lim k = với k > n cos n + sin n Câu 26 Tính lim n2 + A B −∞ ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B Câu 28 Tính lim A 2n2 − 3n6 + n4 B C D un D +∞ B lim qn = với |q| > D lim un = c (Với un = c số) C D +∞ C D C D Trang 2/5 Mã đề Câu 29 Dãy số sau có giới hạn 0? n2 + n + n2 − 3n A un = B u = n (n + 1)2 n2 Câu 30 [3-1131d] Tính lim C un = − 2n 5n + n2 ! D un = n2 − 5n − 3n2 1 + + ··· + 1+2 + + ··· + n B +∞ C D 2 Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a D a A B C a 2 A Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab B C √ D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 a 38 3a 38 B C D A 29 29 29 29 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a B C a A D Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a A B C D 9 9 3a Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 Câu 41 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B 0dx = C, C số α+1 Z Z dx = ln |x| + C, C số C dx = x + C, C số D x Câu 42 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 44 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Cả hai câu D Chỉ có (II) Câu 45 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) − g(x))dx = A Z C ( f (x) + g(x))dx = f (x)dx − Z f (x)dx + g(x)dx B Z Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 46 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 47 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Trang 4/5 Mã đề C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 48 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) + C ⇒ Z B Z f (t)dt = F(t) + C D Câu 49 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K Z Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số B f (x) có giá trị lớn K D f (x) có giá trị nhỏ K Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D B D A A A 10 11 13 C D 12 C B 14 A B 15 C 16 17 C 18 A 19 A B 20 A 21 D 22 B 23 D 24 B 25 B 26 A 27 D 29 28 A 30 C C 32 31 A D 33 D 34 35 D 36 B 38 B 37 B 39 A 40 41 A 42 C C B 43 B 44 45 B 46 B 48 B D 47 49 C 50 A C ... (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D B D A A A 10 11 13 C D 12 C B 14 A B 15 C 16 17 C 18 A 19 A B 20 A 21 D 22 B 23 D... số y = ln A xy0 = −ey + Câu 17 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m > C m ≤ D m < A m ≥ 4 4 log 2x Câu 18 [122 9d] Đạo hàm hàm số y = x2 − ln... 10 x3 2x3 ln 10 2x3 ln 10 Câu 19 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vơ số log(mx) Câu 20 [122 6d] Tìm tham số thực m để phương