1. Trang chủ
  2. » Tất cả

Đề ôn thi thhpt môn toán lớp 12 (516)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,27 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a C lim [ f (x) + g(x)] = a + b D lim = x→+∞ x→+∞ g(x) b 2n + Câu Tìm giới hạn lim n+1 A B C D x −1 Câu Tính lim x→1 x − A +∞ B C −∞ D 2−n Câu Giá trị giới hạn lim n+1 A B C −1 D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm x2 − Câu Tính lim x→3 x − A B +∞ 2n + Câu Tính giới hạn lim 3n + 2 B A x+1 Câu Tính lim x→−∞ 6x − 1 A B Câu Giá trị lim (3x − 2x + 1) x→1 A B C +∞ D Câu 10 Dãy! số có giới hạn 0? n A un = B un = n2 − 4n n3 − 3n C un = n+1 !n −2 D un = C −3 D C D C D Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 12 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (2; 4; 4) D (1; 3; 2) √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − xy Câu 16 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 11 − 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Câu 15 [12215d] Tìm m để phương trình x+ A < m ≤ B m ≥ 1−x2 − 4.2 x+ 1−x2 Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 Câu 19 [12214d] Với giá trị m phương trình A < m ≤ B < m ≤ 1 3|x−2| = m − có nghiệm C ≤ m ≤ D ≤ m ≤ Câu 20 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 22 Dãy số sau có giới hạn 0? n2 − 3n n2 − A un = B u = n n2 5n − 3n2 C un = n2 + n + (n + 1)2 D un = − 2n 5n + n2 ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D 7n2 − 2n3 + Câu 25 Tính lim 3n + 2n2 + A B C Câu 26 Dãy số sau có giới hạn khác 0? n+1 A B n n C √ n D C D Câu 27 Tính lim A n+3 B D - sin n n Trang 2/5 Mã đề 1 + + ··· + n Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = 1 C lim un = D lim un = Câu 28 [3-1132d] Cho dãy số (un ) với un = Câu 29 Tính lim A 2n2 − 3n6 + n4 B C D 12 + 22 + · · · + n2 Câu 30 [3-1133d] Tính lim n3 A B +∞ C D 3 Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a C D a B A a Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B 2a C a D a [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S√BC) √ với mặt đáy S O = a √ a 57 2a 57 a 57 B C D a 57 A 19 17 19 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 3a , hình chiếu vng Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 3a a 38 A B C D 29 29 29 29 Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C a D Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 42 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (II) sai C Câu (I) sai D Khơng có câu sai Câu 44 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R B Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Câu 46 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) Trang 4/5 Mã đề (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề D (I) (III) Câu 47 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 48 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A B A C A B C A 10 D 11 A 12 D 13 A 14 B 16 B 15 C 18 C 19 A 20 C 21 A 22 D 23 A 24 D 17 B 25 D 26 A 27 A 28 C 29 C 30 C 31 C 32 C 33 C 34 35 D 36 A 37 A 38 39 C 40 41 C 42 A 43 B D B D 44 45 B 46 47 B 48 A 49 B 50 A C B ... sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D A B A C A B C A 10 D 11 A 12 D 13 A 14 B 16 B 15 C 18 C 19 A 20 C 21 A 22 D 23 A 24 D... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) Trang 4/5 Mã đề (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C Cả ba mệnh đề. .. [122 6d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Câu 15 [122 15d] Tìm m để phương trình x+ A < m ≤ B m ≥ 1−x2 − 4.2 x+ 1−x2 Câu 18 [122 21d]

Ngày đăng: 10/03/2023, 23:01

w