Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A 0 B 2 C −1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A B 2 x −9 Câu Tính lim x→3 x − A B −3 x−2 Câu Tính lim x→+∞ x + A −3 B C −1 D C +∞ D D − Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B f (x) có giới hạn hữu hạn x → a x→a C lim+ f (x) = lim− f (x) = +∞ x→a x→a C D lim+ f (x) = lim− f (x) = a x→a x→a Câu Cho f (x) = sin x − cos2 x − x Khi f (x) A + sin 2x B −1 + sin 2x C −1 + sin x cos x x−3 bằng? Câu [1] Tính lim x→3 x + A −∞ B C +∞ x+2 Câu Tính lim bằng? x→2 x A B C x −1 Câu Tính lim x→1 x − A B −∞ C x+1 Câu Tính lim x→+∞ 4x + A B C √ √ 4n2 + − n + Câu 10 Tính lim 2n − 3 A B C 2 Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D − sin 2x D D D +∞ D D +∞ D log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < ∨ m > Câu 12 [1226d] Tìm tham số thực m để phương trình A m < B m ≤ log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x 2x ln 10 2x ln 10 x ln 10 Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 6) C (2; 4; 3) D (1; 3; 2) Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = ey + D xy0 = −ey + 1 Câu 16 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D √ Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 ;3 D 2; A [3; 4) B (1; 2) C 2 Câu 15 [3-12217d] Cho hàm số y = ln Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 19 [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = có nghiệm 1 1 A m ≤ B m > C m < D m ≥ 4 4 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 + 19 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C −∞ D n−1 Câu 22 Tính lim n +2 A B C D 3 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B - C D 3 ! 1 Câu 24 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D 2 Câu 25 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 26 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) B lim √ = n D lim k = với k > n Trang 2/5 Mã đề ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 29 Tính lim A −∞ B cos n + sin n n2 + B +∞ 2n2 − Câu 30 Tính lim 3n + n4 A B C D C D C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 19 19 17 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab B D √ A √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 2 Câu 36 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a a 5a A B C D 9 9 d = 120◦ Câu 37 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C D 3a Trang 3/5 Mã đề √ Câu 38 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 3a a 38 B C D A 29 29 29 29 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 17 19 19 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B C a A D a 3 Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Cả hai sai D Chỉ có (II) Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 44 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 45 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 47 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z B f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Câu 48 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) B dx = log |u(x)| + C u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai C Câu (I) sai D Câu (III) sai sai Câu 50 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx B Z D ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C B A B A 11 C 10 A C 12 B 13 D 14 15 A C B 16 A 17 18 C 19 A 20 A 21 A 22 A 23 D B 25 D 24 A C 26 A 28 27 A D 29 C 30 C 31 C 32 C 33 D 34 35 D 36 A 37 39 C B D 38 B 40 B 41 D 42 D 43 D 44 D 45 D 46 D 47 A 48 49 A 50 B D ... g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C B A B A 11 C 10 A C 12 B 13 D 14 15 A C B 16 A 17 18 C 19 A 20 A 21 A 22 A 23 D B... ∀x ∈ (a; b) Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 47 đề sau sai? Z [123 3d-2] Mệnh Z A k f (x)dx... (1; 2) C 2 Câu 15 [3 -122 17d] Cho hàm số y = ln Câu 18 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 19 [122 4d] Tìm tham số