1. Trang chủ
  2. » Tất cả

Đề ôn thi thhpt môn toán lớp 12 (401)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,55 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − 2n 3n + 1 bằng? A 1 B − 2 3 C 2 3 D 1[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − 2n bằng? 3n + 2 C D A B − 3 Câu Phát biểu sau sai? 1 A lim = B lim k = n n C lim qn = (|q| > 1) D lim un = c (un = c số) 2n − Câu Tính lim 2n + 3n + A B C +∞ D −∞ x+1 Câu Tính lim x→+∞ 4x + 1 A B C D 4x + bằng? Câu [1] Tính lim x→−∞ x + A −4 B C D −1 2x + Câu Tính giới hạn lim x→+∞ x + 1 C D −1 A B Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin 2x D −1 + sin x cos x Câu [1] Tính lim Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = +∞ x→a x→a Câu Giá trị lim(2x − 3x + 1) x→1 A B x→a C D +∞ Câu 10.! Dãy số sau có giới !n hạn 0? n A B 3 !n !n C − D e − xy Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 12 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề √ Câu 14 [12215d] Tìm m để phương trình x+ A < m ≤ B ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 − 3m + = có nghiệm C m ≥ D ≤ m ≤ log(mx) = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 4] Câu 15 [1226d] Tìm tham số thực m để phương trình Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m < C m ≥ D m ≤ √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C Vô số D 62 Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 23 Tính lim B C D 2n2 − 3n6 + n4 D + + ··· + n Câu 24 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = ! 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D ! 1 Câu 26 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 A B C Trang 2/5 Mã đề cos n + sin n n2 + B −∞ 12 + 22 + · · · + n2 Câu 28 [3-1133d] Tính lim n3 A B Câu 29 Tính lim n+3 A B Câu 27 Tính lim A Câu 30 Dãy số sau có giới hạn 0? n2 − 3n − 2n B u = A un = n 5n + n2 n2 C D +∞ C +∞ D C D C un = n2 − 5n − 3n2 D un = n2 + n + (n + 1)2 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 38 3a B C D A 29 29 29 29 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 abc b2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 5a 2a a A B C D 9 9 Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C 2a D a Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B D √ C √ A √ 2 2 2 a +b a +b a +b a + b2 Câu 41 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z f (x)g(x)dx = f (x)dx g(x)dx k f (x)dx = f B Z D f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 44 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Cả hai sai D Chỉ có (II) Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Trang 4/5 Mã đề Câu 47 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) +C ⇒ Z B Z f (u)dx = F(u) +C D Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z k f (x)dx = k f (x)dx, k số Câu 48 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 50 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B 0dx = C, C số α+1 Z Z dx = ln |x| + C, C số D dx = x + C, C số C x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A B A C A 10 11 C 12 A 13 C 14 D 15 17 16 B D C D 20 A D 21 24 A B 26 A 27 A 28 A C 29 31 30 A D B 35 D 22 25 A 33 C 18 C 19 A 23 C C 32 C 34 C 36 C 37 A 38 A 39 A 40 C 42 C 41 C 44 43 A 45 D 47 49 46 48 C B 50 A D C D ... số C x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A B A C A 10 11 C 12 A 13 C 14 D 15 17 16 B D C D 20 A D 21 24 A B 26 A 27 A 28 A... Câu 15 [122 6d] Tìm tham số thực m để phương trình Câu 17 [122 5d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m < C m ≥ D m ≤ √ Câu 18 [122 8d]... phân biệt? A 63 B 64 C Vô số D 62 Câu 19 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vơ số C D Câu 20 [122 21d] Tính tổng tất nghiệm phương trình

Ngày đăng: 10/03/2023, 22:59

w