Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − n2 2n2 + 1 bằng? A − 1 2 B 0 C 1 3 D[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − n2 bằng? Câu [1] Tính lim 2n + 1 1 B C D A − Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim+ f (x) = lim− f (x) = +∞ D lim f (x) = f (a) x→a x→a x→a Câu Giá trị lim(2x − 3x + 1) x→1 A B 2 x − 12x + 35 Câu Tính lim x→5 25 − 5x A +∞ B −∞ C +∞ D C − D D − 2n bằng? Câu [1] Tính lim 3n + 2 A B C − 3 2 Câu Cho f (x) = sin x − cos x − x Khi f (x) A −1 + sin 2x B + sin 2x C − sin 2x Câu !Dãy số sau có giới !n hạn 0? n A B 3 √ √ 4n2 + − n + Câu Tính lim 2n − 3 B +∞ A 2x + Câu Tính giới hạn lim x→+∞ x + A −1 B !n C e !n D − C D D C 2n + Câu 10 Tìm giới hạn lim n+1 A B D −1 + sin x cos x C D 1 − xy Câu 11 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 11 + 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 √ √ − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ Câu 12 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ 1−x2 − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C 2020 D log2 2020 log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x ln 10 x 2x ln 10 2x3 ln 10 Câu 16 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vơ số C 64 D 62 Câu 19 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≤ C m < D m ≥ Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 2 + + ··· + n Câu 21 [3-1133d] Tính lim n3 B C D +∞ A 3 ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C D +∞ A 2 Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 24 A Câu 25 A B D un Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim B −∞ C D +∞ Tính lim n+3 B C D Câu 26 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 7n2 − 2n3 + Câu 27 Tính lim 3n + 2n2 + A B C C un = C n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 D - Trang 2/5 Mã đề Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a > lim = lim = +∞ ! un = = a , lim = ±∞ lim Câu 29 Tính lim A Câu 30 Tính lim A n−1 n2 + B 1 + + ··· + 1.2 2.3 n(n + 1) B C D C D ! Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a C D a B 3a , hình chiếu vng Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a B C D A 3 √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a A B C D 29 29 29 29 Câu 34 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C a D 2a Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a C D A Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 abc b2 + c2 b a2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ a 57 2a 57 a 57 D A B C a 57 19 17 19 Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B a C D A 2 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 42 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 43 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z C f (x)dx = f (x) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề D (I) (II) Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (II) D Chỉ có (I) Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? Trang 4/5 Mã đề (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai C Câu (III) sai D Câu (I) sai sai Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 49 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 50 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D A D C A A C B 10 A 11 B 12 C 13 14 15 A D B 16 A 17 D 18 D 19 D 20 D 21 A 23 B 25 A 22 C 24 C 26 A 27 D 28 29 D 30 A 31 C 33 32 A D 34 A C 35 36 A 37 D 38 A 39 D 40 41 C 43 45 42 D B 47 A 49 C D B 44 D 46 D 48 D 50 C B ... A Z - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A D A D C A A C B 10 A 11 B 12 C 13 14 15 A D B 16 A 17 D 18 D 19 D 20 D 21 A 23 B 25 A... 2n2 + A B C C un = C n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 D - Trang 2/5 Mã đề Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = >... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề D (I) (II)