Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm giới hạn lim 2n + 1 n + 1 A 3 B 1 C 0 D 2 Câu 2 Tí[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2n + Câu Tìm giới hạn lim n+1 A B C x+1 Câu Tính lim x→−∞ 6x − 1 B C A Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D D Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B 2−n Câu Giá trị giới hạn lim n+1 A −1 B 2n + Câu Tính giới hạn lim 3n + A B Câu Dãy số !n có giới hạn 0? n3 − 3n A un = B un = n+1 C D C D C x+2 bằng? x A B 2n − Câu Tính lim 2n + 3n + A −∞ B D !n −2 C un = D un = n2 − 4n C D C +∞ D C D Câu Tính lim x→2 Câu 10 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 2020 C 13 D log2 13 q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 1] C m ∈ [0; 4] D m ∈ [−1; 0] √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 62 C 64 D 63 √ Câu 14 [12215d] Tìm m để phương trình x+ 3 A < m ≤ B ≤ m ≤ 4 1−x2 √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập ! " ! " đây? 5 D ;3 A [3; 4) B (1; 2) C 2; 2 Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + √ ab Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) log(mx) = có nghiệm thực Câu 19 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m < ∨ m = C m < D m ≤ log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = x 2x ln 10 x ln 10 2x3 ln 10 Câu 21 Dãy số sau có giới hạn 0? − 2n n2 − n2 − 3n n2 + n + A un = B u = C u = D u = n n n 5n + n2 5n − 3n2 n2 (n + 1)2 Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 23 [3-1131d] Tính lim B C 1 + + ··· + 1+2 + + ··· + n B 2 Câu 24 Dãy số sau có giới hạn khác 0? sin n A √ B n n A Câu 25 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) D ! C +∞ C n D D n+1 n = với k > nk D lim qn = với |q| > B lim Câu 26 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ Trang 2/5 Mã đề Câu 27 Tính lim A n+3 B C Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ ! 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B 2 + 22 + · · · + n2 Câu 30 [3-1133d] Tính lim n3 A +∞ B C +∞ C D un D D D 3 Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a 2a a B C D A 9 9 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 a 57 2a 57 A B a 57 D C 19 19 17 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D C Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C a D 2 0 0 Câu 36.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C a D Trang 3/5 Mã đề Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ A C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab D √ A √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 42 Xét hai câu sau Z Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên (I) hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (I) D Chỉ có (II) Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (III) D (I) (II) Câu 45 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Trang 4/5 Mã đề Câu 46 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 47 Z Các khẳng định sau Z sai? A Z C Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = F(x) +C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Câu 48 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D xα dx = Z f (u)dx = F(u) +C xα+1 + C, C số α+1 0dx = C, C số Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B Cả ba đáp án √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B A C B B C C D 10 A 11 D 12 13 B 14 15 A 16 17 A 18 19 B B D B 20 21 A 23 D B 25 D C 22 D 24 D 26 D 27 C 28 D 29 C 30 D 31 C 32 D 33 C 34 D 35 A 36 D 37 A 38 39 D 41 A 43 C 40 B 42 B 44 C 45 B 46 47 B 48 49 A 50 D C B C ... 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B A C B B C C D 10 A 11 D 12 13 B 14 15 A 16 17 A 18 19 B B D B 20 21 A 23 D B 25 D C... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (III) D...Câu 15 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 16 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa