1. Trang chủ
  2. » Tất cả

Đề ôn thi thhpt môn toán lớp 12 (50)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 115,49 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x)g(x)] = ab x→+∞ g(x) x→+∞ b C lim [ f (x) − g(x)] = a − b D lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ Câu Giá trị lim (3x − 2x + 1) x→1 A B 2x + Câu Tính giới hạn lim x→+∞ x + A B −1 D +∞ C Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim− f (x) = f (b) D lim+ f (x) = f (a) lim− f (x) = f (b) x→a C D x→a x→b x→b Câu Giá trị lim(2x − 3x + 1) x→1 A B +∞ C D 2n + Câu Tính giới hạn lim 3n + 2 B C D A x+1 Câu Tính lim x→+∞ 4x + 1 B C D A Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim+ f (x) = lim− f (x) = +∞ x→a x→a x −9 Câu Tính lim x→3 x − A B C +∞ x−2 Câu 10 Tính lim x→+∞ x + A − B C −3 Câu 11 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D −3 D D Vô nghiệm Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 13 [12215d] Tìm m để phương trình x+ 3 A < m ≤ B ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 C m ≥ − 3m + = có nghiệm D ≤ m ≤ Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≤ C m > D m ≥ q Câu 16 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 17 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m ≤ D m < A m > 4 4 log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x A y0 = B y0 = C y0 = D y0 = x x ln 10 2x ln 10 2x3 ln 10 Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 20 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Phát biểu sau sai? A lim un = c (Với un = c số) B lim √ = n = với k > D lim qn = với |q| > k n Câu 23 Trong khẳng định có khẳng định đúng? C lim (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C Câu 24 Dãy số sau có giới hạn khác 0? sin n A √ B n n C Câu 26 Dãy số sau có giới hạn 0? n2 − n2 + n + A un = B u = n 5n − 3n2 (n + 1)2 C un = D n+1 n n ! 3n + 2 Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D n2 − 3n n2 D D un = − 2n 5n + n2 Trang 2/5 Mã đề 1 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C A +∞ B ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = ! D D ! un C Nếu lim un = a < lim = > với n lim = −∞ v n ! un = +∞ D Nếu lim un = a > lim = lim un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C D −∞ √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a a 38 3a 58 B C D A 29 29 29 29 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a Câu 33 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 19 19 17 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 4a A 2a B 3a C Câu 37 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C a D 2 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C 2a D a Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C 2a D Câu 41 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Chỉ có (I) Câu 42 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) + C ⇒ Z B Z f (t)dt = F(t) + C D Z D Cả hai câu sai Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z k f (x)dx = k f (x)dx, k số Câu 43 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Cả hai sai D Chỉ có (II) Câu 45 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Trang 4/5 Mã đề Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề Câu 46 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 47 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 48 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 49 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D C A A B A 10 B 11 13 12 A C 14 B 15 D 18 19 A 21 B D 22 B 24 C C D 26 25 A 27 C 29 28 D 30 31 A 33 D C 35 C B 32 C 34 C 36 C D 38 37 A D 39 B 43 D 45 40 B 42 B 44 C 47 49 C 20 A 23 41 D 16 C 17 C D 46 D C 48 A 50 B B ... (x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A D C A A B A 10 B 11 13 12 A C 14 B 15 D 18 19 A 21 B D 22 B 24 C C D 26 25 A 27 C 29... + n2 Trang 2/5 Mã đề 1 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n C A +∞ B ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C Câu 29 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Trang 4/5 Mã đề Các mệnh đề A (II) (III) B (I) (III)

Ngày đăng: 10/03/2023, 21:54

w