1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg toán lớp 12 (97)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,32 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→+∞ x − 2 x + 3 A −3 B 2 C 1 D − 2 3 Câu 2 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim x→+∞ x−2 x+3 D − Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim f (x) = f (a) x→a C lim+ f (x) = lim− f (x) = a D lim+ f (x) = lim− f (x) = +∞ x→a x→a x→a x→a √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − C D 4 x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B C +∞ D − 2n Câu [1] Tính lim bằng? 3n + 2 C − D A B 3 Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 A −3 B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 2n + Câu Tìm giới hạn lim n+1 A B 2−n Câu 10 Giá trị giới hạn lim n+1 A B C C D −4 C D C D C −1 D Câu 11 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A [3; 4) B (1; 2) C ;3 D 2; 2 √ ab Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m > D m ≤ 4 4 Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vơ nghiệm √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C 62 D Vô số Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m < D m > log 2x Câu 19 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x B y0 = C y0 = D y0 = A y0 = x ln 10 2x ln 10 2x ln 10 x3 Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x + A xy0 = ey − B xy0 = −ey + C xy0 = ey + D xy0 = −ey − ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D cos n + sin n Câu 22 Tính lim n2 + A B −∞ C +∞ D 1 + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = Câu 24 Dãy số sau có giới hạn 0? n2 − − 2n A un = B un = 5n − 3n 5n + n2 C un = n2 + n + (n + 1)2 ! 1 + + ··· + 1+2 + + ··· + n A +∞ B C Câu 26 Trong khẳng định có khẳng định đúng? D un = n2 − 3n n2 Câu 25 [3-1131d] Tính lim D (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề Câu 27 Tính lim n+3 A B C D Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a , lim = ±∞ lim = Câu 29 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > 12 + 22 + · · · + n2 Câu 30 [3-1133d] Tính lim n3 A B B lim un = c (Với un = c số) D lim C = với k > nk D +∞ d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C D 4a Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a B C a D A 2 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C D a 3 d = 30◦ , biết S BC tam giác Câu 35 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 0 0 Câu 36.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) Trang 3/5 Mã đề √ √ √ a 38 3a 38 3a 3a 58 A B C D 29 29 29 29 Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A 2a B C D a 2 Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C a D 2a Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B Câu 42 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị lớn K C D B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 43 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 44 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai D Cả hai sai Trang 4/5 Mã đề Câu 46 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C xα dx = B xα+1 + C, C số α+1 Câu 47 Z Các khẳng định Z sau sai? k f (x)dx = k A Z C Z D dx = x + C, C số dx = ln |x| + C, C số x Z f (x)dx, k số B f (x)dx = F(x) +C ⇒ !0 Z Z f (x)dx = f (x) f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D Z f (u)dx = F(u) +C Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) D Chỉ có (II) Câu 50 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C D u(x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C C B B 10 D D C C B 16 17 B 18 A 19 A 20 A 21 D 22 A 23 B 24 25 B 26 27 D C 30 A 31 C 32 33 D 35 34 D 39 D C B D 36 C 37 B 28 A 29 38 C B 40 C 42 B 43 A 44 45 A 46 47 C 14 15 41 D 12 C 13 C 11 D B B D B C 48 A B 50 49 A D ... log |u(x)| + C D u(x) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C C B B 10 D D C C B 16 17 B 18 A 19 A 20 A 21 D 22 A 23 B 24 25 B 26 27... C 62 D Vô số Câu 17 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 14 [122 10d] Xét số thực dương x, y thỏa mãn log3 Câu 18 [122 5d] Tìm tham số thực... (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề Câu 27 Tính lim n+3 A B C D Câu 28 Trong mệnh đề đây, mệnh đề ! sai? un = +∞ A Nếu lim un = a > lim = lim ! un B Nếu lim un

Ngày đăng: 10/03/2023, 09:48

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w