Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A −1 B 1 C 2 D 0 Câu 2 [1] Tính lim 1 − n2 2n2 + 1 bằng? A 1 2 B[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A −1 B 1−n bằng? Câu [1] Tính lim 2n + 1 A B x+2 Câu Tính lim bằng? x→2 x A B C D C − D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu Giá trị lim(2x2 − 3x + 1) x→1 A B +∞ x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A − B −∞ Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B − 2n Câu [1] Tính lim bằng? 3n + 2 A B − 3 x −1 Câu 10 Tính lim x→1 x − A −∞ B C +∞ D C D C D +∞ C D D C D +∞ q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 1] C Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 13 C 2020 D log2 2020 log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m < ∨ m > C m ≤ D m < √ Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B 2; C [3; 4) D ;3 2 Trang 1/5 Mã đề √ √ Câu 15 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B m ≥ C < m ≤ D ≤ m ≤ 4 2 Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e − C xy0 = ey + D xy0 = −ey + √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C 64 D Vô số − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 + 19 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 20 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D 2 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 B A n−1 Câu 22 Tính lim n +2 A B C Câu 27 Dãy số sau có giới hạn khác 0? 1 B √ A n n C D +∞ C D ! 3n + 2 + a − 4a = Tổng phần tử Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D + + ··· + n Câu 24 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 25 Tính lim n+3 A B C D cos n + sin n Câu 26 Tính lim n2 + A +∞ B −∞ C D sin n n D n+1 n Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = !vn un B Nếu lim un = a > lim = lim = +∞ Trang 2/5 Mã đề ! un C Nếu lim un = a < lim = > với n lim = −∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ 7n2 − 2n3 + 3n3 + 2n2 + A B Câu 30 Dãy số sau có giới hạn 0? − 2n n2 − A un = B u = n 5n + n2 5n − 3n2 Câu 29 Tính lim C - C un = D n2 + n + (n + 1)2 D un = n2 − 3n n2 Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a B a C A 2a D d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 4a A 2a B 3a C Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B C 2a D a A a Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a D C Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a mặt bên (S BC) vng góc với mặt đáy Khoảng cách từ C đến (S AB) Trang 3/5 Mã đề √ √ √ √ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab D √ A √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R Câu 42 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Cả hai câu sai D Chỉ có (I) Câu 43 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 44 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 45 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn Trang 4/5 Mã đề (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Cả hai D Chỉ có (II) Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (II) sai C Câu (I) sai D Khơng có câu sai Câu 50 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A D A C 12 C 15 D B B 18 20 21 A 22 24 B 25 C 27 28 D C B C B 30 A C 31 B 26 D 29 D 16 A 19 A 23 C 14 13 A 17 B 10 B 11 C D 33 A 32 C 34 C 35 B 36 A 37 B 38 A 39 C 40 B 41 C 42 B 43 D 44 45 A 46 47 D 48 A 49 D 50 D B C ... = + tan2 x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A D A C 12 C 15 D B B 18 20 21 A 22 24 B 25 C 27 28 D C B C B 30 A C 31 B 26... D sin n n D n+1 n Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = !vn un B Nếu lim un = a > lim = lim = +∞ Trang 2/5 Mã đề ! un C Nếu lim un = a < lim = > với... trị nhỏ Câu 19 [122 10d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 + 19 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 20 [122 12d] Số nghiệm