Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A 1 − sin 2x B 1 + 2 sin 2x C −1 + sin x cos x D −1 + 2[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin x cos x 1−n Câu [1] Tính lim bằng? 2n + 1 A B − C 4x + bằng? Câu [1] Tính lim x→−∞ x + A −4 B −1 C 2−n Câu Giá trị giới hạn lim n+1 A B −1 C Câu Dãy số có giới hạn 0? ! n n3 − 3n −2 A un = B un = n+1 !n C un = D −1 + sin 2x D D D D un = n2 − 4n Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm x+1 x→+∞ 4x + A B Câu Giá trị lim (3x − 2x + 1) x→1 A B Câu Tính lim Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) Câu 10 Tính lim A +∞ x→3 x2 − x−3 C C +∞ D D 1 = n D lim un = c (un = c số) B lim B C −3 D Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 13 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B 2; C [3; 4) D ;3 2 Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = e − C xy0 = −ey + D xy0 = −ey − 1 − xy Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 19 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 16 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 14 [3-12217d] Cho hàm số y = ln Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 13 D log2 2020 log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 1 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x ln 10 x 2x3 ln 10 Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m > D m < A m ≤ 4 4 Câu 20 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B C +∞ D −∞ Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 1 + + ··· + 1+2 + + ··· + n A +∞ B C D 2 2 + + ··· + n Câu 24 [3-1133d] Tính lim n3 A B C D +∞ 3 Câu 25 Dãy số sau có giới hạn 0? n2 + n + n2 − − 2n n2 − 3n A un = B u = C u = D u = n n n (n + 1)2 5n − 3n2 5n + n2 n2 + + ··· + n Câu 26 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = Câu 23 [3-1131d] Tính lim Trang 2/5 Mã đề 7n2 − 2n3 + Câu 27 Tính lim 3n + 2n2 + A - B ! 1 Câu 28 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D C D Câu 29 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n Câu 30 Tính lim n+3 A B 1 = với k > nk D lim qn = với |q| > B lim C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 19 19 17 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C D a A d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 3a C 4a D [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 17 19 19 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D 2 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 abc b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ C B D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai sai Câu 42 Z Các khẳng định Z sau sai? k f (x)dx = k A Z C C Câu (II) sai Z D Câu (I) sai f (x)dx, k số B f (x)dx = F(x) +C ⇒ !0 Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D f (x)dx = f (x) Z f (u)dx = F(u) +C Câu 43 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B G(x) = F(x) − C khoảng (a; b), với C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Câu 44 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) có giá trị lớn K Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 46 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Trang 4/5 Mã đề Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 48 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B Z dx = x + C, C số D xα dx = xα+1 + C, C số α+1 dx = ln |x| + C, C số x Câu 49 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C B B B C C B C 10 B 11 12 B C 13 D 14 B 15 D 16 B 18 B C 17 19 A 20 A 21 B 22 A 23 B 24 25 C 26 A 28 27 A D 29 31 D 30 A C 32 A 33 D 34 35 D 36 37 A B D C 38 39 D 40 A 41 A 43 B B 45 D 42 B 44 B 46 47 C 48 49 C 50 D B C ... mệnh đề - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C B B B C C B C 10 B 11 12 B C 13 D 14 B 15 D 16 B 18 B C 17 19 A 20 A 21 B 22 A 23 B... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề -... Pmin = 21 9 Câu 16 [122 19d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 14 [3 -122 17d] Cho hàm số y = ln Câu 17 [122 21d] Tính tổng tất