1. Trang chủ
  2. » Tất cả

Đề ôn thi thptqg toán lớp 12 (40)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,41 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu Giá trị lim (3x − 2x + 1) x→1 A +∞ B C D Câu Dãy số !n có giới hạn 0? n3 − 3n A un = B un = n+1 !n −2 C un = D un = n2 − 4n Câu Phát biểu sau sai? A lim k = n C lim un = c (un = c số) B lim Câu [1] Tính lim A − 2n bằng? 3n + B − = n D lim qn = (|q| > 1) C D Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin x cos x D −1 + sin 2x Câu !Dãy số sau có giới !n hạn 0? n A B e !n C !n D − B C D B C −3 D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A Câu Tính lim x→+∞ A − x−2 x+3 Câu 10 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [−1; 0] log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m ≤ Câu 12 [1226d] Tìm tham số thực m để phương trình A m < B m < ∨ m > Trang 1/5 Mã đề 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 − 19 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < Câu 13 [12210d] Xét số thực dương x, y thỏa mãn log3 √ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 62 C Vô số D 63 Câu 15 [12215d] Tìm m để phương trình x+ A < m ≤ B ≤ m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 4) D (2; 4; 6) log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 x ln 10 x 2x ln 10 un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ C +∞ D Câu 22 Phát biểu sau sai? A lim qn = với |q| > 1 C lim k = với k > n B lim un = c (Với un = c số) D lim √ = n Câu 23 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = 7n2 − 2n3 + 3n3 + 2n2 + A B - ! 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B Câu 24 Tính lim C D C D Trang 2/5 Mã đề n−1 Câu 26 Tính lim n +2 A B C Câu 27 Tính lim n+3 A B C ! 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ 12 + 22 + · · · + n2 Câu 29 [3-1133d] Tính lim n3 A B +∞ C 3 cos n + sin n Câu 30 Tính lim n2 + A +∞ B C −∞ D D D D D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 b a2 + c2 a b2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B C a D 2a A a Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 0 0 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 2a D 3a d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 38 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 5a 8a 2a A B C D 9 9 Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a D A B C a √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 38 3a 58 3a B C D A 29 29 29 29 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C (I) (II) D Cả ba mệnh đề Câu 43 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 45 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) có giá trị lớn K Trang 4/5 Mã đề Câu 46 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 47 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D xα dx = xα+1 + C, C số α+1 0dx = C, C số Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 49 Z Các khẳng định Z sau sai? k f (x)dx = k A Z C Z f (x)dx, k số B f (x)dx = F(x) + C ⇒ !0 Z Z f (x)dx = f (x) f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D Z f (t)dt = F(t) + C Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B D B D B D D D 10 11 D 12 13 A 14 A C 15 17 16 B D 20 21 A B 24 D 26 A 27 D 28 A 29 B B 30 C 31 D D 32 C 34 33 A 35 D 36 C 37 38 D B C 40 39 A B 43 42 D C 44 A C 45 B 46 47 B 48 A 49 C 22 A 25 41 B 18 19 23 C 50 A C C ... 1−x2 Câu 17 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A Vô nghiệm B C D Câu 18 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 19 [122 7d] Tìm... sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B D B D B D D D 10 11 D 12 13 A 14 A C 15 17 16 B D 20 21 A B 24 D 26 A 27 D 28 A 29... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) C (I) (II) D Cả ba mệnh đề Câu

Ngày đăng: 10/03/2023, 09:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w